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Abstract

The present work addresses the challenge of integrating low-
level information with high-level knowledge (known as se-
mantic gap) that exists in content-based image retrieval by in-
troducing an approach to describe images by means of spatial
relations. The proposed approach is called Image Retrieval
using Region Analysis (IRRA) and relies on decomposing
images into pairs of objects. This method generates a repre-
sentation composed of n triples, each one containing: a noun,
a preposition and, another noun. This representation paves the
way to enable image retrieval based on spatial relations. Re-
sults for an indoor/outdoor classifier shows that neural net-
works alone are capable of achieving 88% in precision and
recall, but when combined with ontology this result increases
in 10 percentage points, reaching 98% of precision and recall.

1 Introduction
In this work we investigate the application of spatial rela-
tions in the image retrieval problem. The issue of represent-
ing the semantics existent in an image has been receiving
great attention recently. Numerical methods (low level) are
not able to fully integrate semantics (high level) due to the
fact that the semantic content might be constituted by qual-
itative concepts. The challenge of integrating low-level in-
formation with high-level knowledge is a known problem
in computer vision, often referred as the semantic gap. In
this work, a multi-level approach, called Image Retrieval
using Region Analysis (IRRA), is proposed to retrieve im-
ages by their semantics from a bottom-up knowledge rep-
resentation procedure. The method proposed here ensem-
bles a stack of distinct neural networks in order to estimate
spatial relations, expressed by a spatial preposition between
pairs of objects. This procedure permits a representation of
an image by the objects depicted and the relations holding
between them. Thus, a sparse representation is constructed
taking into account these objects and their relations. The im-
ages are indexed based on this sparse representation in order
to enable fast retrieval. Finally, we extend a public ontol-
ogy with this data in order to infer new relations beyond
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the original binary relations. This representation enables the
retrieval of images based on queries with respect to spatial
arrangements.

To semantically interpret an image it is necessary to: de-
fine the context, detect objects, define some similarity metric
and, finally, apply some method for knowledge representa-
tion (Wan et al. 2014). We can organize the proposed frame-
work in two distinct steps: the quantitative analysis, related
to low-level information processing, and the qualitative anal-
ysis, which stands for high-level knowledge representation.

The quantitative analysis tackles the semantic gap prob-
lem using a hierarchy of classifiers. We represent the se-
mantics building a top-down approach which contains a spe-
cific classifier for each of the following tasks: scene recog-
nition, object segmentation and preposition estimation. The
proposed approach decomposes an image into scenes and
then, for each scene, it segments the related objects; given a
pair of these objects, the method estimates a spatial preposi-
tion.

The qualitative analysis is built on top of Suggested Up-
per Merged Ontology (SUMO)1 (Niles and Pease 2001;
Pease 2011) and is constructed with the data obtained at
the quantitative phase, i.e., scenes, objects and prepositions.
This representation contains the distinct segmented objects
and their relations, expressed by a spatial preposition.

For evaluation purposes, the method proposed is applied
to image retrieval tasks. The results obtained show that our
method outperforms recent approaches aiming at the re-
trieval of images by means of spatial relations. Results also
show that the classification task is much improved with a
combination of neural networks (working at low-level in-
formation) with an object ontology (representing high-level
knowledge) in contrast to using the neural network classi-
fiers alone.

2 Related work
One of the most common approaches for retrieving images
is the paradigm known as query by example. Bag of Visual
Words (BOVW) is a method widely used to perform im-
age retrieval in this context. BOVW extracts local features
and, with respect to a sparse representation, performs im-
age retrieval (Philbin, Sivic, and Zisserman 2008). BOVW-
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based techniques retrieve images by their visual similarity.
However, the retrieval task does not take into account the
meaning (or semantics) of the information sought, since it
is solely based on numerical analyses. On the one hand, the
way an image is represented is crucial to enable a fast re-
trieval of images. On the other hand, there is poor correla-
tion between the semantics one image might contain and its
constructed representation (Hudelot, Atif, and Bloch 2008).

One possible way to represent the semantics expressed
in images is by following the steps described in (Hare et
al. 2006) extract and describe the features of interest, per-
form object segmentation and create a high-level representa-
tion of the detected regions in the images. Considering non-
structured regions in images, the goal is to assign a distinct
label to each one of them. A number of approaches have
focused in labeling regions in an image. To name some of
the most relevant we can refer to those based on Conditional
Random Fields (CRF) (Gould, Fulton, and Koller 2009), ap-
proaches based on deep Neural Networks (NN) (Socher et
al. 2011) or Convolutional Neural Networks (CNN) (Gir-
shick et al. 2014), combinations of CRF and CNN have also
been applied to this task (Zheng et al. 2015). These methods,
however, do not take into account relations between objects
in images, as considered in this paper. It is worth noticing
that, in order to reduce the semantic gap, it is important to
represent the spatial relations among objects, since these re-
lations suffer less from viewpoint changes than the object
recognition itself (Bloch, Hudelot, and Atif 2007). Some
work has investigated the inclusion of high-level knowledge
focused on spatial relations in image analysis. For example,
we can cite the work of (Bloch, Hudelot, and Atif 2007)
and (Hudelot, Atif, and Bloch 2008). Both of them establish
high-level assumptions to enhance the low-level processing.
And more recently, we refer to (Lu et al. 2016) and (Dai,
Zhang, and Lin 2017) both of them establish relations be-
tween objects in an image based on a set of distinct predi-
cates. Similarly, (Malinowski and Fritz 2014) focus on im-
age retrieval by using queries built on spatial relations be-
tween objects in images and (Mai et al. 2017) that retrieves
images based on spatial arrangement of an example input
image. In the present paper, we propose a new paradigm that
combines quantitative processing and also qualitative analy-
sis in an end-to-end architecture.

In order to establish a spatial relation, it is necessary to
define a reference system. For instance, considering the rela-
tion x is in front of y, three concepts should be defined: the
target object, the reference object and the reference system
(Hudelot, Atif, and Bloch 2008). The reference system is, in
general, categorized from the observer’s viewpoint (relative
or absolute), or with respect to the way that the relation is
used: intrinsic, extrinsic or deictic. This work uses intrinsic
relations, which specify a relation under the perspective of
an observer. It is important to reinforce that these relations
are not constant in time and can also change their status with
respect to the adopted perspective. The present work uses
spatial relations as defined by a general ontology in order to
accomplish the automatic extraction of the semantic content
present in an image.

There are distinct definitions of ontology found in the lit-

erature (Sankat, Thakur, and Jaloree 2016). In this work,
ontology is understood as in (Lehmann and Vöelker 2014)
which defines ontology as a formal knowledge represen-
tation, which may or may not be restricted to a specific
domain. This representation is expressed in a manner that
might be understood by a computational process (Sankat,
Thakur, and Jaloree 2016). Ontology might be referred as
the commonsense knowledge with respect to a domain of
interest, and can be expressed by: concepts, relations be-
tween concepts, functions and instances. The Suggested Up-
per Merged Ontology (SUMO), used in this work, extends
these concepts with axioms in higher-order logic that at-
tempt to define each concept.

3 Image Retrieval using Region Analysis
(IRRA)

In this work we address the problem of the semantic gap
in image retrieval by representing an image by the spatial
relation among the objects existing in the image itself. Our
aim is to combine information obtained from the pixel level
(quantitative analysis) with information provided by special-
ists (qualitative analysis), in this work the specialist knowl-
edge is defined in terms of spatial prepositions in a general
ontology. The method proposed in this work is called Image
Retrieval using Region Analysis (IRRA) and is summarized
in Figure 1. Considering an input image, IRRA applies a
neural network in order to segment objects in the image, that
are further combined into pairs of objects. In the sequence,
for each pair, a preposition between them is estimated. Thus,
we decompose the image into n-triples containing pairs of
objects and a spatial preposition. These n-triples could, thus,
be used to represent (and reason about) the domain. Section
3.1 describes the quantitative analysis of IRRA in more de-
tail.

Figure 1: Overview of IRRA method numerical analysis
phase.

3.1 Quantitative analysis
The proposed pipeline of the quantitative analysis is the fol-
lowing:

1. Identify the context in which objects are inserted;

2. Detect regions in the images occupied by each object;

3. Combine the detected objects in pairs;



4. Estimate a spatial relation for every detected object pair.

In order to perform all these tasks, a stack of neural net-
works is applied. We apply three distinct neural networks to
hierarchically detect context, objects and spatial relations.

Context identification: The first neural network is ap-
plied in order to estimate context. In this work, context is un-
derstood as the scene class an image belongs to. Two scene
classes are used in this work: indoor and outdoor. We cre-
ated a model whose architecture is identical to that described
in AlexNet (Krizhevsky, Sutskever, and Hinton 2012) in or-
der to perform this classification. The purpose of this step is
to reduce the number of target objects, dismissing inconsis-
tent objects with respect to the scene; objects such as build-
ings and cars will not be part of the segmentation of an in-
door model, for instance.

Object segmentation: Object (semantic) segmentation is
the second step to represent high-level information in an im-
age. This task is challenging since we want to classify an
image pixel-wise; besides, object identification is dependent
on the context that the objects are immersed in. The neural
networks that are performing semantic segmentation in this
work have the same architecture, although each one has its
own set of weights. The main difference between them is the
target classes that they use to construct the model.

The segmentation neural networks generate a set of class
proposals for each pixel in the image. Additionally, similar
pixels are grouped together in order to represent objects. In
this work we focus on assigning spatial relations between
pairs of these segmented objects. In order to define a spatial
region, we map pairs of detected objects aiming at establish-
ing a representation that might be expressed in topological
terms. Then, another neural network is used to estimate a
spatial preposition from the previous (topological) classifi-
cation. Each image Ix generates a CIx =

(
nIx

2

)
, where nIx

is the number of objects detected for image Ix, and CIx is
the combination of nIx in pairs.

Preposition estimation: A sparse representation of CIx

is created and is provided as input to a neural network whose
task is to assign English prepositions to images. It is impor-
tant to notice that object information is crucial at this point to
disambiguate multiple (possible) assignments. Besides, this
sparse representation provides a notion of the spatial topol-
ogy with respect to a pair of objects.

Finally, this sparse vector combined with the estimated
spatial preposition enables the creation of an index that
can be accessed with a structured query in order to re-
trieve relevant images. This index is similar to those used
by BOVW(Csurka et al. 2004) applications. Thus, images
can be retrieved given a feature which, in the present case, is
a spatial relation.

3.2 Qualitative analysis
Knowledge representation is built with respect to the spatial
arrangement of the identified structures in images. The in-
terpretation of spatial relations contributes to reducing the
semantic gap in images since relations tend to suffer less
with variations than the objects in their arguments (Hudelot,
Atif, and Bloch 2008).

Aiming at representing the knowledge acquired through
the numerical analysis of images, we have opted to extend
an existing ontology: SUMO (Pease 2011). The Suggested
Upper Merged Ontology (SUMO) has been adopted due to
the fact it is built on higher-order logic and, thus, it provides
the flexibility to create complex constructions, not restricted
to binary relations.

The initial step to represent knowledge was to create in-
stances of the domain. In this work, each detected object is
considered as an unique and independent instance.

Considering an example image Ix with the detected ob-
jects Building, Floor and Sky, in this work, each of these
terms is identified by the suffix corresponding to the orig-
inal image, in this case x. Therefore the term Building is
referenced by Buildingx and so on. Formula 1 shows the
instance definition.

( i n s t a n c e Buildingx B u i l d i n g )
( i n s t a n c e Floorx F l o o r )
( i n s t a n c e Skyx Sky )

Formula 1: Instances

All the images and the detected objects are represented in a
similar fashion. The next step of our framework is to con-
struct spatial relations between the distinct objects. To exe-
cute the mapping of these relations to the segmented pair of
objects, we have considered the prepositions estimated by a
statistical classifier. Finally, our preposition domain contains
the following relations: above, across from, behind, below,
in, in front of, inside of, left of, on, right of and under.

By using an off-the-shelf ontology, the representation of
these relations expressed by prepositions was simplified. In
this work, only a punctual extension of SUMO was neces-
sary.

The standard SUMO ontology provides tools to define
spatial relations. In order to define a spatial relation in
SUMO it is necessary to create an instance of the class Posi-
tionalAttribute. This class enables the stating of binary ori-
entation relations between two objects. Additionally, it is
important to mention that the semantics with respect to spa-
tial relations might be expressed by more than one preposi-
tion, besides, distinct prepositions might be similar or com-
plementary. For instance, two distinct objects arranged con-
secutively might be referenced by the following prepositions
: in front of or behind, the proper term is defined according
to the context and the observer’s position. This characteristic
allows us to represent both relations using the double impli-
cation operator <=>. Consequently, it is possible to define
the preposition in front of based on the preposition behind,
or vice-versa. This definition is illustrated in Formula 2. It
is worth pointing out that, although in front of or behind are
both relative to an observer, this paper assumes that observer
is the camera point of view and, thus, it is implicit in the def-
initions.

(<=>
( o r i e n t a t i o n ?X1 ?X2 Behind )
( o r i e n t a t i o n ?X2 ?X1 I n F r o n t O f ) )

Formula 2: Double implication to behind and In front of



Table 1: Precision-recall for scene classification.

Scene Precision Recall N
Indoor 0.86 0.84 1,829
Outdoor 0.88 0.90 2,439
Overall 0.87 0.87 4,268

According to the nature of spatial prepositions, this proce-
dure is applied to other relations, for instance: under and
above or left of and right of. Additionally, the transitivity
of relations was also used in this context whenever possi-
ble. For instance, we might infer that if there is an object a
above an object b and b is above a third object c, therefore a
is above c.

In conclusion, through quantitative methods, qualitative
information with respect to the domain was inferred. The
impact of this procedure was evaluated in the tests described
in the next section.

4 Experiments
This section details the experiments executed in order to
evaluate the proposed method. To perform the experiments,
the publicly available data set SUN09 (Choi et al. 2010) was
used. This data set is composed of more than 12,000 images
containing various classes of objects in distinct scenes. In
order to conduct the tests, two data sets of annotations for
SUN09 were used. First, the data set provided by (Lan et
al. 2012) (data set 1) was used, that contains annotations in
the form of structured queries (〈noun, preposition, noun〉)
representing two relations below and above. Second, the an-
notations provided in (Malinowski and Fritz 2014) (data set
2) were considered that includes eleven (11) distinct prepo-
sition classes: above, across from, behind, below, in, in front
of, inside, left, right, on and under.

Overall 4,367 images were used for training and 4,317
images for testing. In these datasets there are 186,299 pairs
of objects for training and 173,111 for testing, being 106
distinct objects considering data set 1 and 42 considering
data set 2.

Table 2: Intersection over union.

Scene Intersection Over Union %
Context No context

Outdoor 24.11 18.60
Indoor 16.57 14.07
Average 22.66 18.67

4.1 Scene classification
The scene classification part of the present proposal (iden-
tifying what we use as context: indoor or outdoor scenes)
was evaluated using data set 2, with manual annotations for
training and evaluation purposes. The results of this binary
classification are shown in Table 1, where we can see that
the overall precision and recall for each of the considered

classes was 87%, attesting for the suitability of the method
applied for this task.

As described above, scene identification provides infor-
mation to refine the object segmentation procedure, whose
results are shown below.

4.2 Object segmentation
In this part of the system evaluation, we investigate the hy-
pothesis of whether the information provided by the scene
identification (Section 4.1) improves the segmentation. Ac-
cording to this premise we have manually separated the ob-
jects as indoor and outdoor. The indoor objects are: arm-
chair, basket, bookcase, book, bottle, box, chair, closet, cup-
board, curtain, desk, floor, flower, ground, mirror, plant,
poster, refrigerator, seats, table, vase, wall and window. The
outdoor objects are: airplane, balcony, bench, building, car,
door, fence, gate, grass, path, road, rock, sign, sky, street-
light, tree, van, water. According to each scene class de-
tected we apply one or the other segmentation models (i.e.
one trained with indoor objects or the other trained with out-
door objects).

The semantic segmentation model applied in this experi-
ment was fine tunned with the weights provided by (Zhou et
al. 2016). The object segmentation results are shown in Ta-
ble 2. Table 2 shows all the objects in data set 2. In the left-
most column is the scene class of which the object belongs
to. The second column, from left to right, is the noun that
represents the object. The following two columns represent
the Intersection over union (IoU) (Jaccard 1912) considering
object recognition using context information or without us-
ing it (column “No context”). Considering the labeled area
AL for a given object in an scene and the segmented area
AS resulting from a neural network segmentation, the Inter-
section over Union is the ration between the intersection of
AS and AL and the union between the regions, as shown in
equation 1.

IoU =
AS ∩AL

AS ∪AL
(1)

thus, when the neural network segments exactly the same
area as the label (AS = AL), IoU = 1 and when the
segmented area AS is completely different from the label
area AL (AS ∩ AS = ∅), then IoU = 0. For any situa-
tion when the segmented area overlaps with the labelled area
(AS ∩AS 6= ∅) but are not equal, 0 < IoU < 1.

Results show that the classification using context informa-
tion had a higher IoU value overall (shown in line “Average”
in Table 2). However, there were various cases in which the
use of scene class information did not improve the results
(such as the results related to Armchair, or Bench), this oc-
curred due to the fact that such objects appear in both (in-
door and outdoor) scenes. Thus, in these cases, assuming
scene classes caused a reduction in the number of examples
of some objects during the training phase.

4.3 Scene classification with segmentation and
ontologies

With the object-segmentation neural network presented in
the previous section, a second indoor/outdoor classifier was



tested, in which we combine low-level information of the
scene with high-level information provided by the descrip-
tion of the objects in SUMO.

For this classifier, each of the objects presented in Sec-
tion 4.2 was described in SUMO as having one of three
possible classes: indoor (e.g., armchair), outdoor (e.g., sky)
or both (for objects that are both indoor and outdoor, e.g.,
chair). The complete list of object classes and the corre-
sponding SUMO annotations are shown in Table 3. With the
same segmentation method as used in Section 4.2, the ob-
jects recognised in each of the scenes were counted and the
class with the highest amount of objects present was consid-
ered to be the scene class (e.g., a scene with 2 indoor objects,
1 outdoor and 1 both is considered to be an indoor scene).
Scenes where there is an equal number of indoor and out-
door objects were classified as both. In this case, the object
rank was used in order to take into account the relevance
of the object with respect to the scene classification. For in-
stance, a scene containing an object “sky” is considered to
be and outdoor scene, since there can be no sky indoors2).
We considered that the following outdoor objects outrank
any other object in the domain: building, sky, sign, fence,
grass, road.

Results obtained for this combination of low-level and
high-level classification are shown in Table 4 where we ob-
tained over 98% of precision and recall. An improvement of
10 percentage points with respect to the classifier without
the ontology (whose results are shown in Table 1).

From 4,268 scenes used in this experiment 44 could not
be classified into any of the three classes available, since
they did not contain any object, or contained only one object
recognised in the class both. These were not accounted in
Table 4.

4.4 Preposition assignment
The main difficulty of assigning a preposition to a pair of
objects in an image is the common overlapping of terms,
i.e., there are several possible (consistent) preposition as-
signments to each spatial relation. In order to cope with this
issue, before assigning a preposition, the topological rela-
tion between pairs of objects is classified, serving as a bridge
to preposition definition. In our experiments, each image in
the data set was transformed into a representation contain-
ing: (target object, reference object). This representation is
shown in Figure 2, Figure 2a presents the original image and
the object mask is presented in Figure 2b. It is important to
mention the fact that the color of the objects indicates the
target object (blue) and the reference object (red).

Each image available in the data set was segmented and
combined with its relative object, generating a combination
of CIx =

(
NIx

2

)
for images Ix and segmented objects NIx

for the image. Every image generated from CIx was classi-
fied according to the spatial preposition related to the refer-
ence and target objects. In this test we have used data set 2
with 11 spatial prepositions.

2In this experiment, a window is recognised as a single object,
therefore no other object can be perceived within its contours.

Table 3: Objects’ classes and SUMO annotation

Object Class SUMO Annotation
Background Both (subclass Background Both)
Airplane Outdoor (subclass Airplane Outdoor)
Armchair Indoor (subclass Armchair Indoor)
Balcony Outdoor (subclass Balcony Outdoor)
Basket Indoor (subclass Basket Indoor)
Bench Outdoor (subclass Bench Outdoor)
Bookcase Indoor (subclass Bookcase Indoor)
Books Indoor (subclass Books Indoor)
Bottle Indoor (subclass Bottle Indoor)
Box Indoor (subclass Box Indoor)
Building Outdoor (subclass Building Outdoor)
Car Outdoor (subclass Car Outdoor)
Chair Indoor (subclass Chair Indoor)
Closet Indoor (subclass Closet Indoor)
Cupboard Indoor (subclass Cupboard Indoor)
Curtain Indoor (subclass Curtain Indoor)
Desk Indoor (subclass Desk Indoor)
Door Both (subclass Door Both)
Fence Outdoor (subclass Fence Outdoor)
Floor Indoor (subclass Floor Indoor)
Flower Both (subclass Flower Both)
Gate Both (subclass Gate Both)
Grass Outdoor (subclass Grass Outdoor)
Ground Outdoor (subclass Ground Outdoor)
Mirror Indoor (subclass Mirror Indoor)
Path Outdoor (subclass Path Outdoor)
Plant Both (subclass Plant Both)
Poster Indoor (subclass Poster Indoor)
Refrigerator Indoor (subclass Refrigerator Indoor)
Road Outdoor (subclass Road Outdoor)
Rock Outdoor (subclass Rock Outdoor)
Seats Indoor (subclass Seats Indoor)
Sign Outdoor (subclass Sign Outdoor)
Sky Outdoor (subclass Sky Outdoor)
Streetlight Outdoor (subclass Streetlight Outdoor)
Table Indoor (subclass Table Indoor)
Tree Outdoor (subclass Tree Outdoor)
Van Outdoor (subclass Van Outdoor)
Vase Indoor (subclass Vase Indoor)
Wall Indoor (subclass Wall Indoor)
Water Both (subclass Water Both)
Window Both (subclass Window Both)

Table 5 shows the precision, recall and f-measure for each
of the tested prepositions, where the right-most column is
the number of tested samples. The overall values are exhib-
ited in the last line: for the 4,953 relations tested, the system
reached an overall precision of 0.75 with a recall of 0.75 and
a f-measure of 0.71.

Next section compares the performance of IRRA with
other state-of-the-art methods in the task of image retrieval
from structured queries.

4.5 Retrieval evaluation
In order to evaluate image retrieval using IRRA, the annota-
tions provided by (Lan et al. 2012) were used. To the best
of our knowledge, this is the only available data set that
maps spatial relations to objects detected in images. We have



Table 4: Precision-recall for classification with ontology.

Scene Precision Recall N
Indoor 0.98 0.98 1,813
Outdoor 0.99 0.98 2,463
Overall 0.99 0.98 4,320

Table 5: Precision, recall and f-measure for the estimated
prepositions.

Preposition precision recall f-measure n
Above 0.76 0.58 0.66 166
Across from 1.00 0.03 0.06 387
Behind 0.65 0.62 0.63 329
Below 0.84 0.79 0.81 361
In 0.59 0.84 0.69 475
In front of 0.55 0.69 0.61 317
Inside of 0.00 0.00 0.00 65
Left of 0.01 0.01 0.01 187
On 0.60 0.77 0.67 208
Right of 0.00 0.00 0.00 59
Under 0.87 0.98 0.93 2,399
Overall 0.75 0.75 0.71 4,953

tested our method against all the structured query types pro-
posed in (Lan et al. 2012). The structured queries contain a
noun, e.g. pedestrians, or a relation set expressed by a triple
in the form (noun, preposition, and noun), e. g. “car on the
road”. The available structures are represented as: Structure
a (Sa), which contains only a relation set, for instance, “car
on road”; Structure b (Sb) contains a relation set and a noun,
e.g, “car on road, pedestrians”; Structure c (Sc) contains
two relation sets, e.g., “car on road, sky above building”;
Structure d (Sd) contains two relation sets and a noun, e.g.,
“car on road, sky above building, pedestrians”; Structure
e (Se) contains three relation sets, e.g., “car on road, sky
above building, books inside of bookcase”.

Figure 3 illustrates the obtained results and also displays
a comparison with other approaches using the same data set.
Only recall is presented since this is the measurement used
in (Lan et al. 2012). According to Figure 3 it is possible to
observe that IRRA outperforms the other methods in all the
structured queries considered.

Analyzing IRRA results alone, we can see that in larger
queries that do not include single objects (in scenarios Sc
and Se, for instance), IRRA’s performance is not as good as
in other scenarios. This behavior occurs due the fact that,
when answering a query such as Sc or Se, segmentation or
preposition detection errors are propagated to the retrieval
task.

We have also evaluated the retrieval by using the second
data set which has a larger set of prepositions. In this set-
ting IRRA achieved a retrieval with mean average precision
(mAP) of 53.95, outperforming the recent results reported
in (Malinowski and Fritz 2014). The superior performance
of IRRA with respect to other (competing) methods is ex-
plained by the fact that IRRA uses the various relations ex-

(a) Original.

(b) Object mask.

Figure 2: Topology representation with highlighted objects.

isting in an image in the retrieval task.

4.6 Ontology expansion
The queries executed in the tests above were strictly unidi-
rectional due to the fact that there is no high-level reasoning
with respect to the spatial arrangement of the items in the
document collection. To address this issue, we investigated
the application of reasoning using SUMO.

We extended the annotations in (Malinowski and Fritz
2014) with the aim to infer new relations derived from the
original relations that were manually annotated. Through the
use of the SUMO ontology we extended the system’s knowl-
edge about the relations in order to evaluate spatial prepo-
sitions that were not obtained by the quantitative analysis
processes.

In order to evaluate this method, distinct queries were pro-
posed, but keeping the same information to be retrieved from
the set of images. To accomplish this task inverse relations
were applied. For instance, for two objects (x, y) and the
query (x-above-y), we also evaluated the retrieval for (y-
below-x) against the same annotation for above as used in
the original query.

The instanciation of the whole ontology with SUN09 data
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Figure 3: Comparison with other approaches.

generated more than 13, 000 terms with respect to the im-
ages and objects, and more than 18, 000 formulas referenc-
ing the created relations. The retrieval task based on the new
set of queries was performed by evaluating every image us-
ing the E first-order logic theorem prover (Schulz 2013). Al-
though SUMO is defined in a higher-order logic, we were
able to achieve our goals with just the first-order logic con-
tent of the theory in this work, which allowed us to use a
first-order logic prover.

Every image was tested using the new annotated queries,
the mAp achieved in this case was 41.60, whereas he orig-
inal set for these prepositions obtained a mAp of 51. The
decrease in performance observed with the extended set of
relations (in contrast with the original) was due to the fact
that, by increasing the size of the knowledge base, errors
were possibly included in the process, whose detection be-
comes increasingly complex to perform (Pease 2011).

5 Discussion
This paper proposed a framework for image retrieval based
on an ensemble of neural networks and spatial relations de-
fined over an ontology. The proposed method decomposes
the image in distinct levels in order to classify objects and
their spatial relations in static scenes. The retrieval of an
image is than done by specifying the existence of objects
and spatial relations between two objects (e.g., “car on road,
pedestrians” is a possible sentence to use to retrieve an im-
age).

Although the number of objects and relations seems to be
small (42 objects and 11 relations), the number of images
used is over 9,000 and since a scene is divided in relations
between objects in it, it can be used for training more than
one relation and/or terms, thus over 186,000 pairs of objects
in training and 173,000 for testing were generated. This re-

sulted in more than 13,000 terms and 18,000 formulas for
the ontology.

Results on preposition classification also show that the
method proposed in this paper outperforms previous work
in the retrieval of images using spatial relations, however,
it did not perform as well as expected in the following
cases: across from, inside of, left of, right of. This prob-
lem was probably due to the distinct competing prepositions
that could be equally applied to the scenes in these cases. A
deeper investigation of how to represent the object pairs in
order to enhance the estimation of their spatial preposition is
a task for future work. It is also within our future interests to
augment the set of relations covered by the system, relaxing
the present restriction to binary relations.

When classifying an image as an indoor or outdoor scene
using ontology, it is possible to specify an objects class, e.g.,
(subclass Sky Outdoor) or describe it in relation to another
object, e.g., (subclass Armchair Chair), making it easier to
add new objects to the classifier and to reason about their
properties than it is to train a new deep learning method to
classify new objects in the database. As a result, an increase
of 10 percentage points was observed in the results when us-
ing the ontology to classify object’s class found in the out-
puts of the neural networks, suggesting a successful com-
bination of a knowledge representation tool with a state-of-
the-art machine learning algorithm with virtually no learning
or classification running time increase.

6 Conclusion
This work investigated the semantic gap that exists in
content-based image retrieval by introducing an approach
that establishes relations between objects in images by
means of spatial arrangements. The method proposed in
this paper, called Image Retrieval using Region Analysis



(IRRA), starts by decomposing images with respect to pairs
of objects, where each pair is also combined with a spatial
relation. Each spatial relation is related to a spatial preposi-
tion expressed in natural language. IRRA was evaluated on
a public data set, whose results show that our approach out-
performs previous (recent) work in the retrieval of images
using spatial relations.

Results showed that by combining SUMO’s high-level de-
scription of objects with the output of a machine learning
classifier, it is possible to increase in 10 percentage points
the precision and recall of such classifier when the scene
classification is uncertain. Although this increase is achieved
with almost no increase in running time, there as still some
scenes that could not be classified for the lack of context
regarding the objects found in the image.

We believe that the proposed framework has two com-
pelling applications. The first is to improve statistical clas-
sifiers, following an approach similar to (Chen, Shrivastava,
and Gupta 2014), where new samples are evaluated before
inserting them into the knowledge base. The second is the
possibility to include abstractions (in terms of high-level re-
lations, spatial or not) to static data sets in order to enhance
image retrieval tasks.
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