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10 Abstract

11 Psychoinformatics is an emerging discipline that uses tools from the information sciences to organize psychological data. This article
12 supports that objective by proposing a framework for constructing cognition ontologies by using WordNet, FrameNet, and the Sug-
13 gested Upper Merged Ontology (SUMO). The first section describes the major characteristics of each of these tools. WordNet is a large
14 lexical data base that was begun in the 1980s by George Miller. FrameNet is a database of event schemas based on a theory of frame
15 semantics developed by the linguist Charles Fillmore. SUMO is a formal ontology of concepts expressed in mathematical logic that sup-
16 ports deductive reasoning. The next section discusses the objectives of science ontologies and includes examples for psychoses and for
17 emotion. The article then describes potential applications of cognition ontologies for (1) studying how people organize knowledge,
18 (2) analyzing major theoretical concepts such as abstraction, and (3) formulating premises that can serve as a link between informal taxo-
19 nomies and formal ontologies. The final section discusses extending cognition ontologies to related domains such as artificial intelligence
20 and cognitive neuroscience.
21 � 2014 Published by Elsevier B.V.
22
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25 1. Introduction

26 The rapid accumulation of human knowledge is creating
27 an increasing urgency to impose some organization on that
28 wealth of information in order for people to fully compre-
29 hend its significance. One example of the scope of informa-
30 tion about even a single topic is found in a chapter on
31 attention in the Annual Review of Psychology. Chun,

32Golomb, and Turk-Browne (2011) stated that typing the
33word “attention” into a search engine such as PubMed,
34Web of Science, or Scopus will return hits numbering in
35the hundreds of thousands. They therefore created a taxon-
36omy to interpret this research by focusing on the types of
37information that require attention.
38Computers can help organize information when the vol-
39ume and complexity of that information exceeds human
40capacity for understanding. But computers have been hand-
41icapped by the fact that until recently they have lacked the
42context of information about the world needed to under-
43stand much of the data that is collected. A new combination
44of resources that can aid in computer understanding and
45processing of complex and high volume information is
46emerging.
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47 Yarkoni (2012) used the term psychoinformatics to refer
48 to the emerging discipline that uses tools and techniques
49 from the computer and information sciences to improve
50 the acquisition, organization, and synthesis of psychologi-
51 cal data. His search on Google Scholar when writing the
52 article revealed only 18 hits for this term compared to over
53 3000 hits for ecoinformatics, 18,000 hits for neuroinformat-

54 ics, and 1 million hits for bioinformatics. Yarkoni suggested
55 that psychologists are already making important contribu-
56 tions to psychoinformatics but need to formally recognize
57 the topic to encourage its further development. He also
58 argued that psychologists need to develop comprehensive
59 ontologies of psychological constructs to benefit maximally
60 from publicly accessible data sets.
61 Our goal in this article is to illustrate how tools from the
62 information sciences – WordNet, FrameNet, and the Sug-
63 gested Upper Merged Ontology (SUMO) – can be used to
64 construct cognition ontologies. We distinguish between a
65 taxonomy and an ontology based on their degree of for-
66 malism. We will use the term ontology to refer to organiza-
67 tion based on logical relations.
68 In his book on ontologies Hoekstra (2009) described
69 their purpose. Philosophers construct ontologies to formu-
70 late the fundamental building blocks of reality by specify-
71 ing a vocabulary and definitions for describing things in
72 the world (Abdoullaev, 2008). Their contributions are
73 intended to reflect a commitment to some philosophical
74 theory. Developers in the information sciences seek to con-
75 struct ontologies based on pragmatic and computational
76 considerations that can be used primarily to retrieve and
77 reason about knowledge (Sowa, 1995). A third purpose,
78 not discussed in Hoekstra (2009), is to provide a frame-
79 work for organizing and sharing scientific discoveries
80 (Smith & Ceusters, 2010). It is this third purpose that has
81 motivated our project.
82 We begin by describing the characteristics of each of
83 three resources for organizing knowledge. After describing
84 WordNet, FrameNet, and SUMO we discuss the character-
85 istics of scientific ontologies and provide an example for
86 representing psychoses and two examples for representing
87 emotion. We next propose applications of cognition ontol-
88 ogies to (1) studying the organization of knowledge, (2)
89 analyzing major theoretical constructs, and (3) formalizing
90 taxonomies. We illustrate the last objective by expanding
91 on the attention taxonomy developed by Chun et al.
92 (2011). We conclude by linking cognition ontologies to
93 related domains such as artificial intelligence and cognitive
94 neuroscience.

95 2. Information science tools

96 2.1. WordNet

97 WordNet (http://wordnet.princeton.edu) is a large lexi-
98 cal database for English that was initiated in the 1980s
99 by George Miller at Princeton to understand how children
100 learn new words. Although this particular goal was aban-

101doned, the project did result in productive discoveries
102about relations among words (Miller & Fellbaum, 2007).
103One approach to word meaning is based on the hypothesis
104that meanings can be constructed from a small number of
105semantic components. An alternative approach, adopted
106by WordNet, is that words can be related in semantic
107networks consisting of relations such as is-a-kind-of,
108is-a-part-of, is-an-antonym-of and entails. These semantic
109relations organize WordNet into a large network of linguis-
110tically labeled nodes.
111Fellbaum (2010) described an overview of WordNet that
112serves as a basis for our summary. The Collins and Quillian
113(1969) hierarchical network model provided the initial
114inspiration for incorporating hierarchical relations into
115WordNet by linking specific concepts to more general ones.
116There are also important nonhierarchical relations. Word-
117Net classifies synonyms (small, little) into groups called
118synsets in which one member may be substituted for
119another member because they have equivalent or near
120equivalent meaning. Whereas synonymy is a many-to-one
121mapping of words to a concept, polysemy is a one-to-many
122mapping of a word to its meanings. For instance, the word
123trunk may refer to a car, a tree, or an elephant. We plan to
124use WordNet definitions as much as possible because of
125their widespread application in the information sciences.
126However, we will occasionally substitute other definitions
127when they appear more useful for constructing cognition
128ontologies. Some of these substitutions are from the APA

129Dictionary of Psychology (VandenBoss, 2006) because of
130its greater domain specificity.
131Using WordNet definitions requires selecting the rele-
132vant definition (senses) of each word when there is more
133than one definition. For instance, the word attention has
1346 senses in WordNet. One sense is a courteous act indicating
135affection; “she tried to win his heart with her many atten-

136tions”. Another is a motionless erect stance with arms at

137the sides and feet together; “the troops stood at attention”.
138These two senses are atypical in the cognitive literature.
139Two other definitions distinguish between two psychologi-
140cal distinctions that were mentioned by William James’ in
141his book Principles of Psychology (James, 1890). The first
142refers to the faculty or power of mental concentration.
143The second sense refers to the process whereby a person
144concentrates on some features of the environment to the
145(relative) exclusion of others. We will later emphasize these
146two senses when constructing premises for an attention
147ontology.

1482.2. FrameNet

149Frames have a different structure than dictionaries and
150ontologies because they capture co-occurrence and struc-
151tural relations among linguistic concepts. An example of
152their application in cognition is Elman’s (2009) proposal
153that lexical knowledge depends on event schemas. For
154instance, Elman shows how understanding the verb cut

155depends on the identity of the agent (lumberjack, pastry
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156 chef, butcher), the instrument (saw, knife), and location of
157 the underlying event.
158 The Berkeley FrameNet project (https://framenet.
159 icsi.berkeley.edu) provides a useful data set for represent-
160 ing event and other schemas. FrameNet is based on a the-
161 ory of Frame Semantics developed by the linguist Charles
162 Fillmore and later Colin Baker (Fillmore & Baker, 2010).
163 They define cognitive frames as the many organized pack-
164 ages of knowledge that enable people to perceive, remem-
165 ber, and reason about their experiences. Examples
166 include event schemas such as going to a hospital, stages
167 of a life cycle, and the organization of the human face.
168 Cognitive frames often consist of interconnected roles
169 together with constraints on possible or likely fillers of
170 those roles. The concept of a script formulated by
171 Schank and Abelson (1977) would be an example of a cog-
172 nitive frame.
173 Frame Semantics is concerned with the expression of
174 meaning in cognitive structures (frames) that influence
175 understanding of linguistic expressions. Frame evocation
176 in this sense guides the interpretation of language-specific
177 associations that connect linguistic signs with particular
178 frames. The basic assumption of Frame Semantics is that
179 all content words require a link to background frames in
180 order to understand their meaning. Fillmore and Baker
181 state that Frame Semantics research is necessarily empiri-
182 cal, cognitive, and ethnographic because it depends on
183 the experiences and values in the surrounding culture.
184 Many frames in FrameNet, such as for the word
185 Remembering, are relevant to cognition. The FrameNet
186 distinction between Remembering_experience and Remem-

187 bering_information captures the cognitive distinction
188 between remembering experiences in episodic memory
189 and facts in semantic memory (Tulving, 1972). When
190 remembering an experience, a Cognizer calls up an episodic
191 memory of past Experience or an Impression of a Salien-
192 t_entity formed on the basis of past experience. The capi-
193 talized words (Cognizer, Experience, Impression,
194 Salient_entity) are core frame elements. Non-core frame
195 elements for this frame are context, duration, manner,
196 time, and vividness. When remembering information, a
197 Cognizer retains facts in memory and is able to retrieve
198 them. Non-core frame elements for this frame are accuracy,
199 context, time, and topic. FrameNet provides an intermedi-
200 ate level of organization between word definitions and
201 ontological relations. We will provide examples of connec-
202 tions among words, frames, and ontologies after discussing
203 the organization of ontologies.

204 2.3. Suggested Upper Merged Ontology (SUMO)

205 The Suggested Upper Merged Ontology (Niles & Pease,
206 2001; Pease &Niles, 2002) is an open source formal ontology
207 consisting of an upper ontology and many domain ontolo-
208 gies that are freely available at http://www.ontologyportal.
209 org. The upper level of SUMO consists of approximately
210 1000 terms and 4000 axioms (logical statements). When

211combined with its domain ontologies it totals some 20,000
212terms and 80,000 axioms (Pease, 2011). This wealth of defi-
213nitions makes it several orders of magnitude larger than
214ontologies such as DOLCE or the Basic Formal Ontology.
215The expressiveness of the logical language used in SUMO
216also supports a greater richness, variety and completeness
217of definitions with respect to these other ontologies. SUMO
218has undergone thirteen years of development, review by a

 

Note: Indentations depict subclasses.

Fig. 1. Part of the SUMO hierarchy showing psychological processes.
http://www.ontologyportal.org/. Note: Indentations depict subclasses
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219 community of hundreds of people, and application in expert
220 reasoning and linguistics. It covers areas of knowledge such
221 as temporal and spatial representation, units and measures,
222 processes, events, actions, and obligations.
223 SUMO has also been mapped by hand (Niles & Pease,
224 2003) to the entire WordNet lexicon of approximately
225 100,000 noun, verb, adjective and adverb word senses,
226 which not only acts as a check on coverage and complete-
227 ness, but also provides a basis for application to natural lan-
228 guage understanding. The Global WordNet (Pease,
229 Fellbaum, & Vossen, 2008) effort links many other lan-
230 guages, including Arabic, Chinese, and Hindi to the English
231 WordNet synsets, resulting in a multilingual linked lexicon.
232 SUMO supports the Global WordNet by providing a con-
233 ceptual ontology that is independent of a specific language.
234 The concept-word mappings of any given language are
235 somewhat accidental because existing words do not fully
236 represent all available concepts (Pease & Fellbaum,
237 2010). A semantic network or a frame-based ontology pri-
238 marily uses natural-language definitions to express the
239 meaning of words. In contrast, a formal ontology uses log-
240 ical statements (axioms) to represent meaning. SUMO is
241 written in first-order and higher-order logics. The logical
242 statements include over 1000 relations rather than the

243approximately one dozen relations in WordNet. However,
244SUMO is not concerned with words in any particular lan-
245guage and therefore does not classify words into synsets.
246The linking of words in WordNet to either equivalent or
247more generic concepts in SUMO is mutually beneficial.
248Fig. 1 shows a partial depiction of SUMO’s hierarchical
249organization. The root node is Entity, which is partitioned
250into Physical and Abstract. Physical is partitioned into
251Object and Process. Of particular relevance to cognition
252ontologies is the variety of processes that can represent
253cognitive processes. SUMO lists Calculating, Classifying,
254Comparing, Learning, Planning, Predicting, Reasoning,
255and Selecting as intentional psychological processes. The
256lower part of Fig. 1 shows that IntentionalPsychological-
257Process is a subclass of PsychologicalProcess, as are
258Imagining, Perception, and Remembering. Imagining
259(as in dreaming), perception (as in involuntary attention)
260and remembering (as in spontaneous retrieval) can occur
261without intention.

2622.4. Linking FrameNet to SUMO

263In addition to linking WordNet to SUMO, the linking of
264FrameNet to SUMO (Scheffczyk, Baker, & Narayanam,
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Fig. 2. Example of linking FrameNet to SUMO. From Scheffczk, Pease, and Ellsworth (2006).
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265 2006) is helpful for integrating linguistic and formal concep-
266 tual knowledge. Fig. 2 illustrates an example of how frame
267 elements in FrameNet can be linked to classes in SUMO for
268 portions of the Attack frame. The Attack frame inherits
269 from the more general Intentionally_affect frame and uses
270 the Hostile_encounter frame. The FrameNet semantic types
271 (ST), shown in the lower part of the figure, place constraints
272 on the fillers of frame elements. The upper part of the figure
273 shows parts of the SUMO class hierarchy, which differs
274 slightly from the ST hierarchy because it is derived from
275 knowledge engineering principles rather than from linguis-
276 tic principles. Some STs (Shape, Time, Location, Ani-

277 mate_being) have one corresponding SUMO class
278 enabling the STs to become a subclass of its corresponding
279 SUMO concept. However, occasionally a ST (such as Line)
280 has a broader meaning than a corresponding SUMO class.
281 The downward arrow from Transitway to Line in Fig. 2
282 indicates that Transitway is the subclass. The connections
283 among WordNet, FrameNet, and SUMO provide multiple
284 integrated tools for organizing knowledge about cognition.
285 The distinction between unintentional and intentional
286 cognitive processes can serve as an example of establishing
287 a productive link between SUMO and FrameNet. Frame-
288 Net makes this distinction for perception by including both
289 a Perception_experience frame and a Perception_active
290 frame (Fillmore, Baker, & Sato, 2004). The Percep-
291 tion_experience frame refers to unintentional perceptual
292 experiences. The perceiver role is therefore passive, in con-
293 trast to the Perception_active frame in which perceivers
294 intentionally direct their attention to some entity or phe-
295 nomenon. There are different lexical items in each frame.
296 For instance, whereas Perception_experience has see, Per-
297 ception_active has look. Whereas the Perception_experience
298 frame has hear the Perception_active frame has listen. This
299 distinction is consistent with WordNet and with SUMO
300 (Fig. 1) in which only Look and Listen are classified as inten-
301 tional processes.

302 3. Science ontologies

303 3.1. Guidelines

304 The purpose of cognition ontologies is to organize scien-
305 tific knowledge about cognition. Smith and Ceusters (2010)
306 proposed amethodology for organizing scientific knowledge
307 based on the premise that “the most effective way to ensure
308 mutual consistency of ontologies over time and to
309 ensure that ontologies are maintained in such a way as to
310 keep pace with advances in empirical research is to view
311 ontologies as representations of the reality that is described

312 by science” (p. 139).
313 They emphasize that scientific ontologies evolve over
314 time but at any given stage should be consistent with the
315 best available settled science. One might think that his prin-
316 ciple would be problematic for a domain such as cognitive
317 psychology in which there will likely be disagreements on
318 which discoveries by cognitive psychologists deserve classi-

319fication as settled science, however, as we will argue later,
320many such differences can be attributed to how concepts
321are assigned to labels, rather than the presence or absence
322of particular concepts. According to Smith and Ceusters
323(2010):

324Matters ontological will be more complicated in areas of

325non-settled science, where they may be multiple camps

326of experts, and where the appropriate ontological analysis

327of the very experiments used to test given hypotheses may

328be subject to dispute. Ontologies may then provide a sup-
329porting role in the testing of the relevant hypotheses; how-

330ever, it is not up to the authors of reference ontologies to

331pick sides in such disputes; rather this is a decision that

332should wait for science (p. 178).

333Our goal for building cognition ontologies is to formu-
334late logical axioms that encode the definitions, empirical
335findings and theoretical statements that have widespread
336support from cognitive scientists. Such ontologies are, of
337course, subjective and will evolve over time as they are
338shaped by new discoveries and critical feedback. Critical
339feedback is particularly important in unsettled domains
340such as cognitive psychology. As argued by Smith and
341Ceusters, even ontologies in settled domains of science
342can benefit from outside criticism and competing
343proposals.
344Smith and Ceusters advocate that a term should be
345included in an ontology only if there is experimental evi-
346dences that the term exists in reality. They believe that this
347view is generally endorsed by empirical scientists but not by
348computer scientists, in part because “computer scientists –
349unlike most biologists – receive training in cognitive psy-
350chology, which encourages them to have strong feelings
351about what they see as the constructed nature of the human
352mind” (p. 162). We view the realist methodology advocated
353by Smith and Ceusters as an attempt to construct a norma-
354tive ontology for describing science. However, many cogni-
355tive psychologists investigate how people’s descriptive
356models of reality differ from normative models. Cognition
357ontologies should therefore provide a framework for dis-
358cussing the development and evolution of these constructed
359models.
360We partially concur with Smith and Ceusters that tech-
361nical terms that have multiple conflicting technical uses
362should be avoided. For example, one of the reasons
363Lenat (2008) believes that artificial intelligence has not
364advanced further as a theoretical discipline is its inconsis-
365tent use of terminology. Lenat offers the field of medicine
366as a contrasting case in which deliberations over the mean-
367ing of the term myocardial infarction were announced by a
368joint meeting of the American College of Cardiology and
369the European Heart Society. The failure to agree on defini-
370tions can limit both theoretical and practical advances.
371However, elimination of terms that have been used dif-
372ferently by cognitive psychologists could result in very few
373surviving terms. It is therefore necessary to distinguish
374among different uses of a word as in indicator that they

S.K. Reed, A. Pease / Cognitive Systems Research xxx (2014) xxx–xxx 5

COGSYS 455 No. of Pages 24, Model 5+

18 July 2014

Please cite this article in press as: Reed, S. K., & Pease, A. A framework for constructing cognition ontologies using WordNet,
FrameNet, and SUMO. Cognitive Systems Research (2014), http://dx.doi.org/10.1016/j.cogsys.2014.06.001



375 are different concepts in the ontology. For instance,
376 Schmidt (1991) distinguished among four uses of the word
377 distinctiveness when reviewing its effect on memory. Pri-
378 mary distinctiveness refers to items in the immediate con-
379 text such as a black word included in a list of yellow
380 words. Secondary distinctiveness refers to items in memory
381 based on previous occurrences. A yellow word is more dis-
382 tinct than a black word according to this frame of reference
383 because yellow words occur less frequently. Emotional dis-
384 tinctiveness refers to stimuli that have an emotional impact
385 such as the word terrorist. Processing distinctiveness refers
386 to distinctive encodings of stimuli to make them more dis-
387 tinctive, as when people are more likely to recognize a car-
388 icature than the actual drawing in a facial recognition
389 memory test (Mauro & Kubovy, 1992).
390 Formally defined concepts derived from these proposed
391 definitions of words such as distinctiveness should be
392 included in cognition ontologies. Making distinctions
393 among different definitions of a word will be facilitated
394 by SUMO’s link to WordNet (Niles & Pease, 2003), which
395 typically provides more than a single definition. Using
396 SUMO should help resolve many issues regarding multiple
397 interpretations of a word. Concepts such as “primary dis-
398 tinctiveness” and “secondary distinctiveness” can be for-
399 mally expressed in SUMO and linked to words.

400 3.2. Psychology ontologies

401 3.2.1. Psychosis

402 Lexical resources such as WordNet and FrameNet are
403 beneficial because they enable the syntactic and semantic
404 analysis of language, but they are not intended for deduc-
405 tive logical reasoning. In contrast, formal ontologies can be
406 used for automated logical reasoning (Scheffczyk et al.,
407 2006). Most of the initial efforts to organize cognitive con-
408 cepts have been based on taxonomies rather than on formal
409 ontologies. However, several groups have recently pro-
410 posed ontologies for psychological topics such as psychosis
411 (Kola et al., 2010). As stated by the authors:

412

413 An ontology that would facilitate data sharing would

414 increase the statistical power and validity of findings
415 thereby enhancing our understanding of psychosis and

416 psychotic disorders. If this were achieved, knowledge of

417 prediction, prognosis, and recovery in mental illness

418 should be greatly enhanced (p. 43).

419 Kola and his collaborators analyzed how three different
420 professional groups (psychiatrists, neuroscientists,
421 researchers) use symptom labels such as delusions, hostility,
422 anxiety, emotionally withdrawn, disorganized thinking, and
423 active social avoidance. The authors also examined how
424 the two major classification systems, ICD-10 and DSM-
425 IV, describe subtypes of schizophrenia. Their goal is to
426 achieve information interoperability in which data can be
427 moved around without losing its context and meaning.

428Obstacles to achieving this goal include different levels of
429granularity, different measures/scales, and different labels/
430names to represent the same entity.
431The developers selected a variant of the Ontology Web
432Language or OWL (Lacy, 2005) for constructing a psycho-
433sis ontology. The variant, OWL-DL (Baader, Calvanese,
434McGuinness, Nardi, & Patel-Schneider, 2003), uses a
435description logic to make inferences from defined relations
436among concepts. An ontology language such as OWL-DL
437allows definitions of primitive concepts that are often hier-
438archically organized, properties that define relationships
439between concepts, defined concepts that are complex
440descriptions formed from primitive concepts and proper-
441ties, restrictions that use logical attributes such as “some”
442and “only”, axioms that are assertions about concepts,
443and a reasoner that checks axioms and descriptions for log-
444ical consistency. However, the limited expressive power of
445a description logic compared to first- and higher-order
446logic limits the sort of automated checking that is possible
447(Pease, 2011).

4483.2.2. Emotion
449Other examples of psychology ontologies include two
450different ontologies for emotion that are connected to dif-
451ferent upper ontologies. Lopez, Gil, Garcia, Ceareta, and
452Garay (2008) used the Ontology Web Language, the more
453specialized Descriptive Ontology for Linguistics and Cog-
454nitive Engineering (DOLCE), and FrameNet to represent
455emotions. They used the Ontology Web Language to estab-
456lish an interface between the physical world consisting of
457sets of stimuli and the mental world consisting of percep-
458tual descriptions that can trigger emotions. The authors
459used DOLCE (Gangemi, Guarino, Masolo, Oltramari, &
460Schneider, 2002) to provide generic terms including Situa-

461tion, Description, Event, Process, and Action. DOLCE con-
462sists of just over 100 terms formalized in first order logic
463with many extensions defined in OWL. The Emotions
464Ontology then adds more specific terms such as SocialCon-
465text, EnvironmentalContext and PersonalContext. Frame-
466Net enabled the authors to model specific situations such
467as “Torres scored a winning goal in the last minute”.
468The inclusion of DOLCE as an ontology is likely related
469to the authors’ interest in human–computer interaction
470because of DOLCE’s applications to engineering functions
471(Borgo, Carrara, Garbacz, & Vermaas, 2010). In contrast,
472Hastings, Ceusters, Smith, and Mulligan (2011) connect an
473emotions ontology to the upper Basic Formal Ontology
474based on terminology defined in the Ontology of Mental
475Disease in a collaborative effort with the Swiss Centre of
476Affective Sciences and the University of Buffalo. The Basic
477Formal Ontology partitions entities into independent con-
478tinuants, dependent continuants, and occurrents. Terms
479such as Bodily Process, Mental Process, and Cognitive Rep-

480resentation come from the Ontology of Mental Disease and
481connect upward to the Basic Formal Ontology and down-
482ward to the Emotion Ontology. The Emotion Ontology
483includes more specific terms such as Appraisal, Emotion
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484 Occurrent, and Emotion Action Tendencies. More recently,
485 a SUMO version of the Emotion Ontology has been
486 released (http://sigmakee.cvs.sourceforge.net/viewvc/
487 sigmakee/KBs/emotion.kif) that builds on the Emotion
488 Ontology created by Hastings et al. (2011).

489 4. Application of cognition ontologies

490 The previous section provided examples of initial efforts
491 within psychology to construct ontologies for organizing
492 knowledge. This section illustrates how cognitive ontolo-
493 gies could be used to (1) study knowledge organization,
494 (2) analyze a major theoretical concept, and (3) formalize
495 a taxonomy.

496 4.1. Study knowledge organization

497 An ongoing research program by Chi illustrates how
498 ontologies can contribute to studying knowledge organiza-
499 tion. Chi (2008) uses an ontological framework to analyze
500 how knowledge organization can determine resistance to
501 conceptual change. She refers to categories that occupy
502 parallel branches within an ontological tree as laterally dif-
503 ferent and argues that misconceptions assigned to an inap-
504 propriate lateral category are particularly difficult to
505 modify. One example is the distinction between entities

506 (objects or substances that have volume) and processes

507 (that occur over time). Chi discovered that students mistak-
508 enly think of force, heat, electricity, and light as substances,
509 such as closing a door to keep the heat from escaping.
510 Instead, she argued that heat should be thought of as the
511 speed of molecules, which is a process.
512 Chi represents the difference between entities and pro-
513 cess as distinct ontological trees, as shown in Fig. 3 (Chi,
514 in press). The difference is also represented in SUMO,
515 which partitions PhysicalEntity into Object (that sub-
516 sumes Substance) and Process. However, SUMO, like
517 most other upper ontologies, consists of a single ontologi-
518 cal tree in which Entity is the top node. We propose to
519 relate Chi’s multiple ontological trees to SUMO’s single
520 ontological tree. A single ontological tree will not change
521 the nature of her arguments regarding lateral categories
522 because lateral categories will still be distinguishable as
523 occupying different branches within a single tree. Providing
524 an upper ontology, such as SUMO, for discussing concep-
525 tual change should facilitate comparing competing
526 arguments.
527 Gupta, Hammer, and Redish’s (2010) perspective is
528 quite different from Chi’s (2008) static-ontology perspec-
529 tive. They argue for a dynamic perspective in which entities
530 in the world may have multiple ontological classifications
531 that are sensitive to context and can vary from moment
532 to moment. Both novices and experts may therefore use
533 either matter-based or process-based explanations to rea-
534 son about the physical phenomena such as heat, light,
535 and electronic current. Gupta et al. (2010) conclude that

536

537This evidence points toward a dynamic picture of ontolog-
538ical knowledge as being flexible and ideas in the world and

539ontological categories as being multiply connected. Theo-

540retically speaking, this suggests that conceptual knowl-

541edge organization is likely to be network-like rather

542than hierarchical (p. 317).

543This distinction between hierarchies and networks has a
544long history (Wright, Thompson, Ganis, Newcombe, &
545Kosslyn, 2008). A prominent example of a hierarchy is
546Aristotle’s classification of animals into vertebrates and
547invertebrates, which had a major influence until eventually
548replaced by Linnaeus’s taxonomy consisting of multiple
549hierarchical categories such as kingdom (animal), class
550(mammal), order (primate), family (hominid), genus
551(homo), and species (homo sapiens). Wright explained that
552in contrast to a hierarchy’s system of nested groups, there is
553no top in a network. Each node is equal and self-directed.
554The distinction between hierarchies and networks has also
555played a prominent role in cognitive science. The evolution
556of the Hierarchical Network Model (Collins & Quillian,
5571969) into a Spreading Activation Theory (Collins &
558Loftus, 1975) occurring within a semantic network is one
559example.
560The selection of a particular organization of knowledge
561– such as a hierarchy, network, or matrix – depends on how
562well the characteristics of each representation match the
563requirements of the task (Novick & Hurley, 2001). A differ-
564ence between a hierarchy and a network is that there is only
565a single path (link) that connects one node to another when
566ascending a hierarchy. Thus a chair is an example of furni-
567ture, which is an example of an artifact, which is an exam-
568ple of an object (Fig. 3). Although SUMO typically follows
569this principle by linking a subclass to only one class, it
570occasionally uses more than a single link to provide greater
571flexibility. As illustrated in Fig. 1, IntentionalPsychologi-
572calProcess is a subclass of both IntentionalProcess and
573PsychologicalProcess.
574Another common structure for organizing knowledge is
575the matrix. Reed (2012) used a matrix to classify learning
576as mappings across situations. The rows of the matrix cor-
577respond to three types of mappings across knowledge
578states; one-to-one, one-to-many, and partial. The columns
579of the matrix correspond to four types of situations; prob-
580lems, solutions, representations, and socio-cultural con-
581texts. Selecting an appropriate structure is important for
582both providing a good fit for representing data (Kemp &
583Tenenbaum, 2008; Tenenbaum, Kemp, Griffiths, &
584Goodman, 2011) and using the structure to make infer-
585ences (Novick & Hurley, 2001).
586Although each of these knowledge structures is impor-
587tant for organizing knowledge in cognition, they lack the
588organizational capabilities of a formal ontology. SUMO
589is not just a hierarchy or even a network. It is a mathemat-
590ical theory expressed axiomatically, which is far richer in
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591 representational power than any network of binary
592 relations.

593 4.2. Analyze a major theoretical concept

594 A second application of cognition ontologies is to ana-
595 lyze a single concept. Abstraction is a good example
596 because it occurs throughout cognition as different degrees
597 of conceptual generality (Burgoon, Henderson, &
598 Markman, 2013). The hierarchical nature of ontologies
599 requires that they have generic terms (such as entity) at
600 the top and more specific terms at lower levels. This struc-
601 ture is ideal for supporting an analysis of cognitive repre-
602 sentations and processes at different levels within a
603 hierarchy.
604 Levels of abstraction play a predominate role in the rep-
605 resentation of knowledge including comprehending text,
606 representing concepts, learning principles, understanding
607 diagrams, performing actions, and forming values (Reed,
608 submitted for publication). The hierarchical organization
609 of ontologies makes them a helpful tool for comparing
610 multiple levels of abstraction within a common framework.
611 For instance, Trope and Liberman (2010) have pro-
612 posed a construal-level theory of psychological distance
613 in which construals become more abstract as psychological
614 distances increase. Psychological distance refers to the per-
615 ception of when an event occurs, where it occurs, to whom it
616 occurs, and whether it occurs. The theorists define abstrac-

617tion within a hierarchical representation in which both cat-
618egories (poodle, dog, mammal) and actions are parts of
619hierarchies. For actions, the superordinate, abstract level
620focuses on why an action occurs and the subordinate con-
621crete, level focuses on how the action is performed. The rep-
622resentation of actions at multiple levels of abstraction is
623consistent with action–identification theory (Vallacher &
624Wegner, 1987).
625Abstraction can have both beneficial and detrimental
626effects on cognitive processing. Abstract ideas can form
627an obstacle in understanding text when words are so gen-
628eric that their referents are unclear (Bransford &
629Johnson, 1973). But in other cases, abstraction can be help-
630ful. Abstract formulations of problems can improve trans-
631fer across a variety of isomorphic problems when the
632problems are seen as examples of a generic solution. How-
633ever, noticing these generalities is often challenging.
634Gick and Holyoak (1980) found that students seldom
635noticed the similarity between two isomorphic problems
636that required using either radiation to destroy a tumor or
637an army to capture a fortress. These problems can be ana-
638lyzed within the Cause_motion frame in FrameNet in which
639some entity (Theme) starts out in one place (Source) and
640ends up in some other place (Goal), having covered some
641space between the two (Path). Transfer is difficult because
642each of these frame elements have different instantiations
643in the two problems: radiation vs. army for Theme, outside
644body vs. outside fortress for Source, tumor vs. fortress for

Fig. 3. Chi’s (in press) ontological trees that distinguish between objects and processes.
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645 Goal, and body tissue vs. roads for Path. Noticing the anal-
646 ogy requires focusing on the Change_direction frame that is
647 common to both solutions. Converging on the Goal from
648 multiple directions is the key to solving both problems.
649 These are a few of many studies in which cognitive sci-
650 entists have found both positive and negative consequences
651 of abstract ideas. Mapping the concepts from a wide vari-
652 ety of these studies to SUMO and FrameNet would pro-
653 vide common a framework for comparing and
654 contrasting the findings.

655 4.3. Formalize a taxonomy

656 Another application of a cognition ontology is to for-
657 malize a taxonomy such as the one included in a chapter
658 on attention in the Annual Review of Psychology (Chun
659 et al., 2011). Three advantages of using the Chun et al. tax-
660 onomy as an example for developing cognition ontologies
661 are that it was developed by experts, contains important
662 terms that should be included in an ontology, and focuses
663 on a manageable topic within cognition.
664 Fig. 4 shows the major components of the taxonomy,
665 including its division into internal and external attention.
666 External attention is directed toward objects and features
667 in the physical environment. Internal attention is directed
668 toward mental representations stored in working and
669 long-term memory. The taxonomy provides an organiza-
670 tional structure that can serve as a starting point for building
671 an attention ontology by selecting major empirical and the-
672 oretical findings that can serve as axioms in the ontology.

673Defining terms is also central for building an ontology.
674Taxonomies define some terms but many are left unde-
675fined, in part, because they are uncontroversial and too
676many definitions could disrupt a literature review. Variable
677or vague definitions, nonetheless, pose a barrier to organiz-
678ing knowledge. Our methodology for defining terms was to
679initially check a general source (WordNet), then a domain-
680specific source (APA Dictionary), and finally a particular
681source (Chun et al., 2011). WordNet definitions include
682general terms such as attention, object, feature, select, task,
683and response in addition to some theoretical terms such as
684long-term memory and working memory. The APA Dictio-

685nary definitions include other theoretical terms such as
686chunking, early selection, and bottom-up processing. Refer-
687ences to particular authors are needed for specific theoret-
688ical terms (internal attention, external attention) and for
689empirical findings.
690There are two advantages to beginning with WordNet
691definitions. The first is that WordNet is widely used in
692the information sciences and therefore aids in integration
693of knowledge across domains. The second is that, as shown
694in the right column of Appendix A, WordNet definitions
695are linked to terms in SUMO. The links are labeled equiv-

696alent when there is a corresponding term in SUMO or sub-
697suming when the term is associated with a larger class in
698SUMO. For example, attention as mental concentration
699is subsumed by capability in SUMO. Attention as selection
700has the equivalent term Selecting in SUMO. The number
701in parentheses following each word in the left column of
702Appendix A shows the number of senses of the word

Fig. 4. A taxonomy of attention proposed by Chun et al. (2011).
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703 defined in WordNet. The definition(s) in the middle column
704 are the ones most relevant for an attention ontology.
705 The next section contains premises that can provide a
706 foundation for constructing an attention ontology.

707 5. Premises for constructing an attention ontology

708 A challenge for organizing knowledge in a particular
709 domain is to formulate statements that describe that
710 domain. We will refer to such statements as “premises”,
711 defined as natural-language statements that are assumed
712 to be true and from which a conclusion can be drawn. In
713 contrast, statements in SUMO are stated as logical axioms
714 rather than in natural language. Terms in SUMO mean
715 only what their formal axioms constrain them to mean
716 and linguistic terms are just a helpful guide to help humans
717 understand the mathematics.
718 Our long-germ goal is to translate premises into the lan-
719 guage used by SUMO and use them within a formal ontol-
720 ogy. However, there are several advantages of initially
721 formulating statements as premises rather than as axioms:

1. Premises are more reader-friendly than axioms. For
instance, the rule expressing the precondition:
“International flights require a passport.” is expressed
in SUMO as
(=
(and

(instance ?F InternationalFlight)
(experiencer ?F ?A))

(exists (?P)
(and

(instance ?P Passport)
(possesses ?P ?A))))

2. Premises can therefore be more easily evaluated by
peers to provide feedback on their suitability before
they are formally expressed as axioms within an
ontology.

3. Large ontology projects have typically required either
commercial or government investment for producing
computer programs. Funds may be more accessible if
part of an ontology project has been completed by
formulating premises to describe the domain.

745

746 The premises represent a mix of definitional, empirical,
747 and theoretical statements. The definitions are usually
748 based on the WordNet definitions in Appendix A although
749 some are based on the APA Dictionary of Psychology

750 (VandenBoss, 2006) or on a particular research article
751 when a more domain-specific source is required. Empirical
752 and theoretical premises have at least one reference to iden-
753 tify the source. The references are based on classical formu-
754 lations, recent overviews of empirical or theoretical
755 developments, and occasional important findings from sin-
756 gle studies.

7575.1. Examples of premises

758We mark premises with the symbol � to identify their sta-
759tus within the text and list them inAppendix B. For instance,
760the initial two premises define two senses of attention:

761� Attention is the faculty or power of mental concentra-
762tion (WordNet), and
763� Attention is the process whereby a person concentrates
764on some features of the environment to the (relative)
765exclusion of others (WordNet)
766

767Other relevant definitions distinguish between the previ-
768ously discussed distinctions between active and passive per-
769ception of auditory information,

770� Hearing perceives sound via the auditory sense (Word-
771Net, FrameNet, SUMO), and
772� Listening hears with intention (WordNet, FrameNet,
773SUMO)
774

775and visual information

776� Seeing perceives by sight or has the power to perceive by
777sight (WordNet, FrameNet, SUMO), and
778� Looking perceives with attention (WordNet, FrameNet,
779SUMO)
780

781These distinctions are broadly consistent across Word-
782Net, FrameNet, and SUMO so all are listed as sources.
783They are all specific examples of the Perception_experience
784frame in FrameNet that refers to unintentional perceptual
785experiences and the Perception_active frame that refers to
786the direction of attention.
787Maintaining active perception requires vigilance, which
788“refers to the ability to sustain attention over extended
789periods of time” (Chun et al., 2011, p. 76). This definition
790closely matches one of the two senses in WordNet:

791� Vigilance is the process of paying close and continuous
792attention (WordNet)
793

794Perception is its subsuming category in SUMO.

7955.2. External attention

796The dichotomy between external and internal attention
797is a focal point in the Chun taxonomy, as emphasized in
798the chapter’s title – a taxonomy of external and internal
799attention. External attention “refers to the selection and
800modulation of sensory information” (p. 73):

801� External attention selects and modulates sensory infor-
802mation (Chun et al., 2011)
803

804As indicated in Fig. 4, external attention is directed to
805various objects and features in the environment that differ
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806 in sensory modality, spatial locations, and points in time.
807 Features are points in modality-specific dimensions such
808 as color, pitch, saltiness, and temperature. When objects

809 are selected, all of the features of an object are selected
810 together. The use of these terms by Chun et al. (2011) is
811 consistent with the WordNet definitions, resulting in the
812 following premises:

813 � An Object is a tangible and visible entity; an entity that
814 can cast a shadow (WordNet)
815 � A Feature is a prominent attribute or aspect of some-
816 thing (WordNet)
817 � Modality is a particular sensory system (WordNet)
818 � Space is the unlimited expanse in which everything is
819 located (WordNet)
820 � Time is the continuum of experience in which events
821 pass from the future through the present to the past
822 (WordNet)
823

824 Because external attention selects and modulates sen-
825 sory information, the words select and modulate also
826 require definitions. The word select has only a single sense
827 in WordNet

828 � Select is to choose from a number of alternatives
829 (WordNet)
830

831 that is appropriate for a wide range of situations. How-
832 ever, the word modulation has a restricted use in the Chun
833 et al. taxonomy: “Modulation refers to what happens to
834 the selected item, such that attention influences the process-
835 ing of items in the absence of overt competition” (pp. 75–
836 76). This definition restricts modulation to processing that
837 follows selection. In contrast, we use the more generic def-
838 inition from WordNet in which modulation refers to a
839 modification or adjustment that can apply to any stage in
840 processing information.

841 � Modulation is the act of modifying or adjusting accord-
842 ing to due measure and proportion (WordNet)
843

844 This more generic definition of modulation is illustrated
845 in a model in which both perception and action planning
846 influence the weighting of perceptual features. The model
847 was influenced by research that demonstrates searching
848 for shape-defined targets is more efficient after preparing
849 a grasping action and searching for location-defined targets
850 is more efficient after preparing a pointing action. Hommel
851 (2012) proposed that “the perception–action system modu-
852 lates the output gain x from the feature maps, so that
853 information from goal-relevant feature maps has more
854 impact in sensorimotor processing” (p. 227).

855 5.3. Internal attention

856 Internal attention refers to the “selection, modulation,
857 and maintenance of internally generated information, such

858as task rules, responses, long-term memory, or working
859memory” (p. 73), which is summarized as a premise:

860� Internal attention selects, modulates, and maintains
861internally generated information (Chun et al., 2011)
862

863Each of the four examples (task, responses, long-term
864memory, working memory) in Fig. 4 is defined in Word-
865Net. The definition of task,

866� A Task is any piece of work that is undertaken or
867attempted (WordNet)
868

869states a general definition that should be sufficient.
870WordNet lists seven senses for response but the one most
871consistent with its use in psychology is

872� A Response is a bodily process occurring due to the
873effect of some antecedent stimulus or agent (WordNet)
874

875The equivalent term for response in SUMO is causes,
876which requires explanation. causes in SUMO refers to a
877causal relation between instances of a process. The formal
878specification (causes ?PROCESS1 ?PROCESS2) means
879that the instance of ?PROCESS1 brings about the instance
880of ?PROCESS2. ?PROCESS2 would therefore be a
881response caused by the antecedent stimulus or agent
882?PROCESS1.
883The other two terms – long-term memory and working
884memory – refer to memory, defined in WordNet as the cog-
885nitive process whereby past experience is remembered. The
886equivalent term in SUMO, Remembering, is more elabo-
887rate and therefore added as a premise:

888� Remembering is the class of psychological process which
889involve the recollection of prior experiences and/or of
890knowledge which was previously acquired (SUMO)
891

892Long-term memory is defined in WordNet as

893� Long-term memory is your general store of remembered
894information (WordNet)
895

896Working memory is a conceptual elaboration of short-
897term memory (STM) so we briefly discuss this concept as
898a prelude to discussing working memory. The WordNet
899definition of STM is “what you can repeat immediately
900after perceiving it”. This definition is interesting because
901of George Miller’s (1956) classic article on the limited
902capacity of STM that was based on the findings of two
903research paradigms, memory span and absolute judgment.
904The WordNet definition of STM fits the memory span par-
905adigm, but absolutely judgment requires identifying the
906magnitude of sensory sensations rather than recalling a list
907of items. The WordNet definition is therefore too limiting,
908even for describing Miller’s own theoretical contributions
909to understanding STM. An alternative source for con-
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910 structing a domain ontology comes from definitions within
911 the domain. According to the APA Dictionary of

912 Psychology:

913 � Short-term memory is the reproduction, recognition, or
914 recall of a limited amount of material after a period of
915 about 10–30 s (APA Dictionary)
916

917 This definition is more elaborate than the WordNet def-
918 inition because it includes reproduction and recognition as
919 measures and because it states a duration for STM.
920 The theoretical concept, working memory, extended
921 research on STM to include its application to a variety of
922 tasks (Baddeley & Hitch, 1974). In this case the WordNet
923 definition is suitable:

924 � Working memory is memory for intermediate results
925 that must be held during thinking (WordNet)
926

927 In contrast, the APA Dictionary definition of working
928 memory is too theoretical. It defines working memory as
929 “a multicomponent model of short-term memory or active
930 memory that has a phonological loop to retain verbal
931 information, a visuospatial scratchpad to manipulate
932 visual information, and a central executive to deploy atten-
933 tion between them”. This definition describes the working
934 memory model developed by Baddeley and Hitch (1974).
935 One problem with using theoretical formulations as defini-
936 tions is that theories change. This 2006 definition was
937 already dated because Baddeley (2000) had added another
938 component to the working memory model (the episodic
939 buffer) six years earlier.
940 Theoretical formulations should be included as addi-
941 tional premises that follow a more neutral and generic def-
942 inition. For instance,

943 � The Baddeley working memory model includes as com-
944 ponents a phonological loop, a visuospatial scratchpad,
945 an episodic buffer, and a central executive (Baddeley,
946 2000), and
947 � The central executive in Baddeley’s working memory
948 model controls attention (Baddeley, 2000),
949

950 The other three components of Baddeley’s model are
951 not relevant for our current objective and therefore not
952 defined.

953 5.4. Capacity

954 Chun et al. (2011) list limited capacity, selection, modu-
955 lation, and vigilance as the basic characteristics of atten-
956 tion. Limited capacity applies to all aspects of Fig. 4
957 because “at any given moment the environment presents
958 far more perceptual information than can be effectively
959 processed, one’s memory contains more competing traces
960 than can be recalled, and the available choices, tasks, or

961motor responses are far greater than one can handle“
962(Chun et al., 2011, p. 75).
963Capacity has nine senses in WordNet including (1) the
964amount that can be contained and (2) the amount of infor-
965mation (in bytes) that can be stored on a disk drive. The first
966measure is not appropriate for cognition ontologies because
967it is subsumed by senses in WordNet pertaining to physical
968volume. The second (disk drive) sense is inappropriately
969specific for our purposes but is subsumed by WordNet
970senses pertaining to quantities of encoded computer infor-
971mation. Unfortunately, WordNet does not provide a suit-
972able definition of capacity for cognition ontologies, at
973least with respect to the lexicalized token “capacity”.
974We therefore again consulted the APA Dictionary of
975Psychology to formulate a premise based on a more
976domain-specific definition:

977� Capacity is the maximum ability of an individual to
978receive or retain information and knowledge or to func-
979tion in mental or physical tasks (APA Dictionary).
980

981We link Capacity to InformationMeasure in SUMO
982because cognition ontologies focus on mental, rather than
983physical, tasks.
984An advantage of this definition is that it refers both to
985receiving and retaining information. Capacity limitations
986on the ability to receive information were the focus of
987Kahneman’s (1973) book Attention and Effort. Kahneman
988argued that people have limited amounts of mental effort
989to distribute across simultaneously performed tasks. This
990limit on multitasking differs from the storage limits on
991STM in which people store a list of sequential items.
992According to the capacity model of attention

993� An allocation policy distributes mental effort across
994simultaneously performed tasks (Kahneman, 1973), and
995� Performance on simultaneous tasks deteriorates when
996the total demand on mental capacity exceeds available
997capacity (Kahneman, 1973)
998

999Capacity limitations on the ability to retain information
1000was the topic of Miller’s (1956) classic article on STM in
1001which he used chunks as a measure of this capacity.
1002According to the APA Dictionary:

1003� Chunking is the process by which the mind sorts infor-
1004mation into small, easily digestible units (chunks) that
1005can be retained in short-term memory (APA
1006Dictionary).
1007

1008According to Miller

1009� The capacity of short-term memory varies from 5 to 9
1010chunks of information (Miller, 1956)
1011

1012The conceptual evolution from STM to working mem-
1013ory has emphasized that the limited capacity of working
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1014 memory has to be partitioned between processing and stor-
1015 ing information

1016 � Both processing and storage place demands on the lim-
1017 ited capacity of working memory (Cowan, 2005; Engle,
1018 2002)
1019

1020 An impressive demonstration of the tradeoff between
1021 processing and storage in working memory is shown in
1022 Fig. 5 (Barrouillett, Portart, & Camos, 2011). Storage
1023 requires maintaining memory traces and processing
1024 requires updating the content of working memory. The
1025 time-based resource-sharing model proposes that working
1026 memory creates a central bottleneck in which its use for pro-
1027 cessing information reduces the amount of capacity avail-
1028 able for refreshing memory traces. The resulting premise is

1029 � Increasing the demand on processing in working mem-
1030 ory decreases the amount of information that can be
1031 actively maintained (Barrouillett et al., 2011)
1032

1033 Fig. 5 illustrates the robustness of this principle across
1034 several kinds of processing that include updating the con-
1035 tent of working memory, inhibiting responses, selecting
1036 responses, and retrieving information from LTM.
1037 A major distinction between the classic division of STM
1038 and LTM is that LTM is not limited by capacity:

1039 � There is no known limit on the capacity of long-term
1040 memory (Craik & Lockhart, 1972).
1041

1042There is still no known limit on the capacity of LTM so
1043we include it as a premise.

10445.5. Cognitive load

1045The limited capacity of some information-processing
1046components constrains the effective performance of tasks
1047that are demanding of cognitive resources. According to
1048the APA Dictionary:

1049� Cognitive load is the relative demand imposed by a par-
1050ticular task, in terms of mental resources required (APA
1051Dictionary)
1052

1053Difference in the relative demand of mental resources is
1054illustrated by the distinction between selecting stimuli at an
1055early, vs. a late, stage of processing. According to the APA
1056Dictionary

1057� An early selection theory is any theory of attention pro-
1058posing that an attentional filter blocks unattended mes-
1059sages early in the processing stream, prior to stimulus
1060identification (APA Dictionary), and
1061� A late selection theory is any theory of attention propos-
1062ing that selection occurs after stimulus identification
1063(APA Dictionary)
1064

1065Johnston and Heinz (1978) hypothesized that selecting
1066stimuli at an early stage based on sensory information
1067would require less mental effort than selecting stimuli at a
1068late stage based on meaning. The results confirmed their
1069hypothesis. Selecting one of two simultaneously spoken
1070words required less effort when the selection was based
1071on pitch (a woman’s voice) than when it was based on
1072meaning (the name of a city). Their multi-mode theory
1073states that

1074� Selecting stimuli at an early stage based on sensory
1075information requires less mental effort than selecting
1076stimuli at a late stage based on meaning (Johnston &
1077Heinz, 1978)
1078

1079Cognitive load is of particular concern when multi-task-
1080ing or when performing a complex task with many compo-
1081nents. One method of avoiding a performance decline in
1082these situations is to perform some of the tasks
1083automatically.

1084� An automatic action is an act that is performed without
1085requiring attention or conscious awareness (APA
1086Dictionary)
1087

1088Because automatic processing does not require atten-
1089tion, it makes no demands on the available capacity in
1090Kahneman’s (1973) capacity model. The result is that:Fig. 5. Tradeoff between maintenance and processing in working memory.

From Barrouillet et al. (2011).
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1091 � Automatic processing does not cause interference with
1092 other tasks (Posner & Snyder, 1975)
1093

1094 The rationale for this claim is that interference in Kahn-
1095 eman’s capacity model occurs when the demand for capac-
1096 ity exceeds the supply. If automatic processing places no
1097 demands on capacity, then it does not impact the available
1098 capacity that can be used for other tasks.
1099 One implication of this argument is that

1100 � Some component skills required to perform complex
1101 tasks such as reading require automatic processing in
1102 order to prevent cognitive overload (LaBerge &
1103 Samuels, 1974)
1104

1105 Component skills for reading include recognizing letters,
1106 recognizing words, pronouncing works, retrieving mean-
1107 ings of a word, selecting the appropriate meaning based
1108 on context, and combining the meaning of individual
1109 words to understand the sentence. LaBerge and Samuels
1110 (1974) proposed that the demands on capacity would be
1111 overwhelming unless some of these skills could be per-
1112 formed automatically.

1113 5.6. Selection

1114 Automatic processing can be helpful in overcoming a
1115 limited capacity of mental effort, and chunking can be help-
1116 ful in overcoming the limited capacity of STM. However,
1117 automatic processing typically requires extensive practice
1118 and chunking depends on having appropriate chunks in
1119 LTM. Selection of information therefore plays a predomi-
1120 nate role in the Chun et al. (2011) taxonomy:

1121

1122 Limited processing capacity dictates a need for selection
1123 and a primary goal of attention research is to under-
1124 stand which information is selected, how it is selected,
1125 and what happens to both selected and unselected infor-
1126 mation (p. 75).

1127 One influence on external attention is bottom-up atten-
1128 tional control that is driven by factors external to the
1129 observer such as the salience of a stimulus. WordNet does
1130 not define bottom-up processing but the APA Dictionary

1131 does:

1132 � Bottom-up processing proceeds from the data in the stim-
1133 ulus input to higher level processes, such as recognition,
1134 interpretation, and categorization (APA Dictionary)
1135

1136 This definition is contrasted with top-down processing:

1137 � Top-down processing proceeds from a hypothesis about
1138 what a stimulus might be to a decision about whether
1139 the hypothesis is supported by an incoming stimulus
1140 (APA Dictionary)

1141

1142Awh, Belopolsky, and Theeuwes (2012) argue that the
1143distinction between bottom-up and top-down processing
1144is insufficient for explaining selection biases because there
1145are multiple sources of top-down processing such as cur-
1146rent goals and selection history. They therefore propose
1147that

1148� Physical salience, current goals, and selection history
1149influence stimulus selection (Awh et al., 2012)
1150

1151According to WordNet

1152� Salient is having a quality that thrusts itself into atten-
1153tion (WordNet)
1154

1155Awh et al. (2012) use the term physical salience or stim-

1156ulus salience to refer to “the degree to which a stimulus is
1157likely to attract attention based on its low-level properties
1158and independently of the internal mental state of the
1159observer” (p. 437). Stimulus salience is the driving force
1160behind bottom-up processing.
1161Top-down processing is more problematic for them
1162because of its failure to distinguish between current goals
1163and selection history. Although top-down processing has
1164often been equated with goal-driven selection, it can also
1165be influenced by selection history, defined on p. 437 as

1166� Selection history is the bias to prioritize items that have
1167been previously attended in a given context (Awh et al.,
11682012)
1169

1170Selection history requires retention and Hutchinson and
1171Turk-Brown (2012) review how multiple memory systems
1172can influence attention.
1173Selective attention is not necessarily a deliberative
1174action. The allocation policy in Kahneman’s capacity
1175model is influenced by both enduring dispositions (involun-
1176tary attention) and momentary intentions (voluntary atten-
1177tion). The APADictionary defines involuntary attention as:

1178� Involuntary attention is attention that is captured by a
1179prominent stimulus, for example in the peripheral visual
1180field, rather than by deliberately applied or focused by
1181the individual (APA Dictionary)
1182

1183Involuntary attention might occur through automatic
1184processing because occurring without intention is another
1185characteristic of automatic processing in the Posner and
1186Snyder (1975) formulation:

1187� Automatic processing occurs without intention (Posner
1188& Snyder, 1975)
1189

1190Although involuntary attention may be a reflex action to
1191a threatening stimulus, it can also be influenced by the
1192goals of the observer. A preliminary cue that provided no
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1193 information for identifying the location of a perceptual tar-
1194 get nonetheless attracted attention when it had a feature
1195 value that matched the feature value used to identify the
1196 target (Folk, Remington, & Johnston, 1992). For instance,
1197 observers would attend to the location of a colored cue
1198 when it matched the color of the target even though the
1199 cue provided no information about the location of the
1200 target:

1201 � An uninformative perceptual cue can attract attention
1202 when it contains a feature used to identify the target
1203 (Folk et al., 1992)
1204

1205 Observers ignored the cue when it did not contain a fea-
1206 ture used to identify the target. Involuntary attention was
1207 therefore influenced by voluntary attention.

1208 5.7. Conscious awareness

1209 Chun et al. (2011) briefly discuss the relation between
1210 attention and conscious awareness. WordNet has two def-
1211 initions of awareness: (1) having knowledge of, and (2) a
1212 state of elementary or undifferentiated consciousness. The
1213 first refers to the content of awareness and the second to
1214 the state of awareness. We prefer the APA Dictionary def-
1215 inition because of our current focus on content and because
1216 it explicitly states that the content can be either internal or
1217 external experiences:

1218 � Awareness is consciousness of internal or external events
1219 or experiences (APA Dictionary)
1220

1221 This focus on the content of awareness, rather than on
1222 states of consciousness, was the basis for a recent literature
1223 review of the relation between attention and awareness
1224 (Cohen, Cavanaugh, Chun, & Nakayama, 2012). In agree-
1225 ment with Chun et al. (2011) the reviewers found evidence
1226 that attention can be directed toward stimuli that are not
1227 consciously perceived. However, they failed to find con-
1228 vincing evidence that awareness could occur without atten-
1229 tion and therefore proposed a model in which attention
1230 enables selected information to reach conscious awareness.
1231 We use this review as a basis for the premise:

1232 � Attention is necessary, but not sufficient, for conscious
1233 awareness (Cohen et al., 2012)
1234

1235 The description of automatic processing by Posner and
1236 Snyder (1975) provides another premise on conscious
1237 awareness:

1238 � Automatic processing occurs without conscious aware-
1239 ness (Posner & Snyder, 1975)
1240

1241 As stated across three premises in Appendix B, auto-
1242 matic processing occurs without intention, without con-
1243 scious awareness, and without interference with other

1244tasks. One must be careful, however, when identifying the
1245information-processing stage at which automatic process-
1246ing occurs. Consider the Stroop effect (Stroop, 1935) in
1247which people have difficulty naming the color of a word
1248(such as red) when the word has a competing color name
1249(blue). Attempts to eliminate the effect by attending only
1250to the color without reading the word are difficult because
1251people typically automatically read a word. Reading the
1252word in this case occurs without intention, without con-
1253scious awareness of the cognitive processes involved in
1254word recognition, and without interference with simulta-
1255neous cognitive actions. It is this automatic reading of the
1256word that makes it difficult to avoid the Stroop effect and
1257subsequently creates the conscious interference effect in
1258naming the color of the word.
1259Perceptual recognition can be considered a low-level
1260cognitive function and it is not surprising that we can
1261quickly recognize a perceptual pattern without being aware
1262of how we did it. It is less clear that high-level cognitive
1263functions can occur without conscious awareness. None-
1264theless, based on a recent literature review, Hassin (2013)
1265proposed that

1266� Many high-level functions, including goal management
1267and reasoning, can occur without conscious awareness
1268(Hassin, 2013)
1269

1270The same constraints influence the unconscious perfor-
1271mance of low-level and high-level functions according to
1272Hassin (2013). For example, both low-level and high-level
1273functions are more likely to recede from consciousness as
1274they become automatic.
1275To summarize, the premises listed in Appendix B build
1276on an attention taxonomy to define terms and identify
1277major empirical and theoretical discoveries by cognitive
1278scientists. They are intended to elicit feedback before begin-
1279ning the more costly and less transparent programming of
1280axioms based on the premises.

12816. Extension to related domains

1282A benefit of constructing cognition ontologies is their
1283potential contribution to other domains of knowledge.
1284Two closely related domains are artificial intelligence and
1285cognitive neuroscience.

12866.1. Artificial intelligence

1287We made the distinction at the beginning of this pro-
1288posal between the development of ontologies to support
1289either computer-based retrieval and reasoning (Hoekstra,
12902009) or the organization of knowledge for scientific
1291advancement (Smith & Ceusters, 2010). These two objec-
1292tives, of course, are not incompatible. Although cognition
1293ontologies should help advance our understanding of cog-
1294nition, their subsequent formalization would make them
1295available for computer-based retrieval and reasoning.
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1296 Building cognition ontologies that are compliant with
1297 SUMO requires using terms that are defined by SUMO
1298 or linking terms in cognition ontologies to more generic
1299 terms in SUMO. Terms in SUMO are defined in first-
1300 and higher-order logic and used by a logical theory devel-
1301 opment environment called Sigma (Pease & Benzmueller,
1302 2013). A challenge in deriving logical inferences is to find
1303 a small set of relevant axioms among a much larger set
1304 of axioms (Pease, Sutcliffe, Siegel, & Trac, 2010). Sigma
1305 includes a set of optimizations that improve the perfor-
1306 mance of reasoning in SUMO, typically by trading space
1307 for time – pre-computing certain inferences and storing
1308 them in the knowledge base. In many cases this can result
1309 in speedups of several orders of magnitude.
1310 A SUMO-compliant ontology requires that its axioms
1311 are consistent; that a contradiction cannot be derived from
1312 the logical statements in the ontology. Table 1 illustrates a
1313 set of inconsistent premises. A logical deduction based on
1314 premises 1 and 2 results in the inference that incidental
1315 learning (I) requires mental effort (M). A logical deduction
1316 based on premises 3 and 4 results in the inference that inci-
1317 dental learning (I) does not require mental effort (–M).
1318 Removal of premise 2 would eliminate the contradiction.
1319 Cognition ontologies attempt to facilitate logical reason-
1320 ing – and the understanding of the resulting inferences – by
1321 partitioning compound statements into simpler statements.
1322 An example is the Posner and Snyder (1975) theoretical
1323 claim that automatic processing occurs without intention,
1324 without conscious awareness, and without interference
1325 with other tasks. These three criteria are listed separately
1326 as individual premises that are then displayed in the differ-
1327 ent clusters of premises about cognitive load, selection, and
1328 interference (Appendix B). The premise about automatic
1329 processing in Table 1 refers to mental effort so it is clear
1330 which characteristic of automatic processing is used in
1331 the inference. Simpler axioms would also make logical
1332 inferences more transparent.
1333 Another connection of cognition ontologies to AI is
1334 AI’s effort to build human-level artificial general intelli-
1335 gence that exhibits the broad range of general intelligence
1336 found in humans (Adams et al., 2012). According to the

1337authors “aside from the many technological and theoretical
1338challenges involved in this effort, we feel that the greatest
1339impediment to progress is the absence of a common frame-
1340work for collaboration and comparison of results” (p. 26).
1341Many of the important competency areas for artificial
1342intelligence selected by the authors – perception, attention,
1343memory, reasoning, planning, creation, and learning –
1344align with the cognitive skills proposed for cognition
1345ontologies. Cognition ontologies could therefore provide
1346a common framework for comparing work in cognitive
1347psychology and artificial intelligence.
1348Integrating work in artificial intelligence with work in
1349cognitive psychology has the advantage of reintroducing
1350AI back into the field of cognitive science. Although AI
1351played a predominate role in the founding of cognitive sci-
1352ence, its general impact diminished as it became a more
1353specialized and isolated domain (Forbus, 2010; Gentner,
13542010). Gentner’s (2010) prediction for the future of cogni-
1355tive science is that both AI and the study of representations
1356will regain some of their lost prominence because of the
1357increasing importance of web-based retrieval systems.

13586.2. Cognitive neuroscience

1359Cognitive neuroscience studies how the brain imple-
1360ments the cognitive functions discussed in this article. Each
1361field can support the other (Forstmann, Wagenmakers,
1362Eichle, Brown, & Serences, 2011). Formal models of cogni-
1363tion can decompose tasks into components, allowing brain
1364measurements to more precisely target cognitive processes.
1365In return, cognitive neuroscience can provide additional
1366data for constraining the development of formal models.
1367Although data from cognition and cognitive neurosci-
1368ence may converge to mutually support a model, the two
1369domains can also diverge to offer different perspectives.
1370An example is Franconeri, Alvarez, and Cavanagh’s
1371(2013) two-dimensional map architecture based directly
1372on the brain:

1373

1374In this two-dimensional ‘map’ architecture, individual

1375items must compete for actual, bounded space. This archi-

1376tecture defines a flexible resource that is physical rather
1377than metaphorical: it is cortical real estate” (p. 134).

1378According to the map model, competitive interactions
1379from items that are cortically close to each create capacity
1380limits. The authors contrast their model with a more cogni-
1381tive slot model that has a fixed number of slots. The dis-
1382tinction between slots and brain area has ontological
1383implications as revealed in our previous discussion between
1384measuring capacity in information (chunks) rather than in
1385volume. Although two-dimensional maps have area rather
1386than volume, they refer to physical space rather than to
1387amount of information.
1388A challenge for the field of cognitive neuroscience is to
1389integrate knowledge from a rapidly increasing number of
1390studies that determine how mental processes are imple-

Table 1
Premises that result in a logical contradiction.

Premises

1. Incidental learning (I) stores information (S)
2. Storing information (S) requires mental effort (M)
3. Incidental learning (I) requires automatic processing (A)
4. Automatic processing (A) does not require mental effort (M)

Inference 1

1. I implies S (Premise 1)
2. S implies M (Premise 2)
3. I implies M (deduction)

Inference 2

1. I implies A (Premise 3)
2. A implies –M (Premise 4)
3. I implies –M (deduction)
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1391 mented in the brain (Poldrack et al., 2011). The resulting
1392 organizational problems are discussed by Yarkoni,
1393 Poldrack, Van Essen, and Wager (2010):

1394

1395 A major barrier to progress, however, is the relative

1396 absence of an overarching framework for describing neu-

1397 ral and mental function. There is currently little consensus

1398 about how to classify or group different brain regions, net-

1399 works, experimental tasks or cognitive functions, let alone

1400 how to develop mappings between different levels of
1401 description (p. 491).

1402 Two major projects to address this problem are the Cog-
1403 nitive Atlas (Poldrack et al., 2011) and the Cognitive Par-
1404 adigm Ontology (Turner & Laird, 2012).
1405 Poldrack and his coauthors identify two major problems
1406 in integrating research in cognitive neuroscience. One is the
1407 use of ambiguous terminology and the other is the con-
1408 founding of cognitive processes with the tasks used for
1409 measurement. As depicted in Fig. 6, a database of mental

1410concepts is impressively displayed in the Cognitive Atlas.
1411However, our approach to defining terms differs by using
1412previously specified definitions rather than formulating
1413new ones. One advantage is that it is easier to share knowl-
1414edge if others are using the same definitions. Entering
1415“WordNet” into Google Scholar (on June 7, 2013)
1416returned 6590 results for papers published in the year 2012.
1417Another advantage of using widely-used definitions is
1418that a community of scholars has had an opportunity to
1419provide feedback. The definition of working memory in
1420Fig. 6 is:

1421

1422active maintenance and flexible updating of goal/task rel-

1423evant information (items, goals, strategies, etc.) in a form

1424that resists interferences but has limited capacity. These

1425representations may involve flexible binding of

1426representations, may be characterized by the absences of

1427external support for the internally maintained representa-
1428tion, and are frequently temporary due to ongoing

1429interference.

Mental Concept
Identifier

trm_4a3fd79d0b5a7

Title

working memory

Contributor

RPoldrack

Date

6/25/2010

prefLabel

working memory

Synonym

Working Memory

Definition

active maintenance and flexible updating of goal/task relevant information 
(items, goals, strategies, etc.) in a form that resists interference but has limited 

capacity. These representations may involve flexible binding of representations, 
may be characterized by the absence of external support for the internally 
maintained representations, and are frequently temporary due to ongoing 

interference

inScheme

MentalConcept

Discussion

<contents of forum>

Bibliography

Baddeley A. (1992) Working memory. Science, 255, 556-9

Dublin Core

dc:identifier

dc:Title

dc:Contributor

dc:Date

SKOS

skos:prefLabel

skos:altLabel

skos:definition

skos:inScheme

SKOS

skos:Concept

Mental Concept

Identifier

/trm_4a3fd79d0a891

Title

memory

is-a

Mental Concept

Identifier

trm_4a3fd79d0ba6c

Title

working memory retrieval

part-of

Mental Concept

Identifier

trm_4a3fd79d0ba0d

Title

active maintenance

part-of

preceded-by

SWAN Citation 
Ontology

citations:Citation

SIOC

sioc:Forum

measured-by

see Figure 2

Fig. 6. A data-base schema for representation of mental concepts in the Cognitive Atlas. From Poldrack et al. (2011).
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1430 Although this definition provides many details about
1431 working memory, its reference to multiple concepts (main-
1432 tenance, updating, goal, task, strategies, interference,
1433 capacity, binding) needs to be “unpacked” to facilitate log-
1434 ical inferences.
1435 Cognition ontologies provide simple definitions of con-
1436 cepts and then elaborates on these concepts in additional
1437 premises. For instance, we use the WordNet definition of
1438 working memory as a memory for intermediate results that
1439 must be held during thinking. We then state in another pre-
1440 mise that the Baddeley (2000) working memory model
1441 includes as components a phonological loop, a visuospatial
1442 scratchpad, an episodic buffer, and a central executive. In
1443 general, our goal in formulating premises is to separate def-
1444 initions, theoretical models, and empirical results.
1445 An additional challenge for organizing research on cog-
1446 nitive neuroscience is to link mental constructs to the tasks
1447 used to measure them (Poldrack et al., 2011; Yarkoni et al.,
1448 2010). This challenge is being addressed in the Cognitive
1449 Paradigm Ontology (http://www.wiki.cogpo.org) by speci-
1450 fying characteristics of cognitive paradigms that have been
1451 used during fMRI and PET brain scans (Turner & Laird,
1452 2012). The Cognitive Paradigm Ontology uses the Basic
1453 Formal Ontology (http://www.ifomis.org/bfo/) as a foun-
1454 dational ontology. The Basic Formal Ontology is coordi-
1455 nated through the Open Biomedical Ontologies (OBO)
1456 Foundry to support the development of biomedical
1457 ontologies.
1458 In contrast, the Data-Brain initiative uses OWL to con-
1459 struct a global framework based on four dimensions that
1460 integrate data, information, and knowledge on brain infor-
1461 matics (Zhong & Chen, 2012). The function dimension
1462 describes cognitive functions and their hierarchical rela-
1463 tions. For example, it partitions cognitive functions into
1464 thinking-centric and perception-centric, thinking-centric
1465 into problem solving and reasoning, and reasoning into
1466 deduction and induction. The experiment dimension
1467 describes the task (auditory, visual), the measuring instru-
1468 ment (EEG, MRI), and the participants (patient, normal).
1469 The data dimension describes the data by using partitions
1470 such as structured or unstructured and original or derived.
1471 The analysis dimension describes the analysis in terms of
1472 analytics (such as feature extraction) and software
1473 programs.
1474 Although we support efforts to use ontologies to
1475 describe cognitive functions we believe that ontologies
1476 such as OWL and the Basic Formal Ontology are limited
1477 for the formal construction of ontologies. They provide a
1478 taxonomy but lack the expressive logical definitions that
1479 are possible only in first order and higher order logic used
1480 by SUMO. SUMO has been automatically mapped to the
1481 Open Biomedical Ontologies (Pease, 2011, pp. 98–100),
1482 which should be helpful in making comparisons across
1483 cognition ontologies, the Cognitive Atlas, the Cognitive
1484 Paradigm Ontology and the Data-Brain initiative to relate

1485work in cognitive psychology to work in cognitive
1486neuroscience.

14877. Conclusion

1488Because of the growing interest in organizing knowledge
1489within the cognitive sciences we proposed a framework for
1490constructing cognition ontologies by using WordNet,
1491FrameNet, and SUMO. The advantage of defining terms
1492by using WordNet is that WordNet is widely used across
1493domains in the information sciences. However, its defini-
1494tions are occasionally too general to satisfy word usage
1495in a particular domain so we also relied on the APA Dictio-

1496nary for more domain-specific definitions.
1497FrameNet captures co-occurrence and structural rela-
1498tions among linguistic concepts. The frames provide orga-
1499nized packages of knowledge that represent how people
1500perceive, remember, and reason about their experiences.
1501For instance, the distinction between remembering experi-
1502ences and remembering information mirrors the common
1503distinction between episodic and semantic memory in cog-
1504nitive psychology. Core (cognizer, experience, impression)
1505and non-core (duration, vividness) frame elements provide
1506generic slots that are instantiated with specific information.
1507SUMO is a formal ontology consisting of an upper
1508ontology and numerous domain ontologies. It has many
1509advantages for serving as an upper ontology including its
1510large number of definitions and axioms, the expressiveness
1511of its logical language, and its mapping onto information
1512science tools such as WordNet, FrameNet, and other
1513ontologies. Its inclusion of a large number of psychological
1514processes (Fig. 1) makes it an ideal upper ontology for
1515cognition.
1516Cognition ontologies can be used to study knowledge
1517organization, analyze major theoretical concepts such as
1518abstraction, and formalize taxonomies. Creating premises
1519for cognition ontologies is a useful preliminary step for
1520the subsequent creation of axioms, as illustrated by our
1521premises for extending a taxonomy of attention. As stated
1522by Chun et al. (2011) for their proposed attention
1523taxonomy:

1524

1525The value of this taxonomy will not lie on whether it is

1526correct in its proposed form, but rather as a starting point

1527to sketch a big-picture framework and to develop common

1528language and concepts. At a minimum, the taxonomy

1529serves as a portal for the attention literature, and at its

1530best, it can stimulate new research and more integrative

1531theories (p. 75).

1532This perspective also applies to other efforts to develop
1533taxonomies and ontologies for understanding cognition.
1534Tools from the information sciences can enhance these
1535efforts by providing additional resources for organizing
1536knowledge in the new field of psychoinformatics.
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Appendix A

Relevant senses of words (WordNet 3.1) for attention in cognition ontologies

Word (senses) WordNet definitions SUMO link

Action (10) something done (usually as opposed to something said) IntentionalProcess (subsuming)
Attention (6) 1. the faculty or power of mental concentration; “keeping track of all

the details requires your complete attention”
Capability (subsuming)

2. the process whereby a person concentrates on some features of the
environment to the (relative) exclusion of others

IntentionalPsychological
Process (equivalent)

Awareness (2) 1. having knowledge of; “he had no awareness of his mistakes” IntentionalRelation (subsuming)
2. state of elementary or undifferentiated consciousness; “the crash
intruded on his awareness”

PsychologicalAttribute
(subsuming)

Capacity (9) 1. the amount that can be contained VolumeMeasure (subsuming)
2. the amount of information (in bytes) that can be stored on a disk
drive

InformationMeasure
(subsuming)

Concentration
(7)

1. complete attention; intense mental effort Perception (subsuming)

2. great and constant diligence and attention SubjectiveAssessmentAttribute
(subsuming)

Emotion (1) 1. any strong feeling EmotionalState (subsuming)
External (4) 1. happening or arising or located outside or beyond some limits or

especially surface; “the external auditory canal”
located (subsuming)

Feature (6) 1. a prominent attribute or aspect of something; “the map showed roads
and other features”

Attribute (subsuming)

Goal (4) 1. the state of affairs that a plan is intended to achieve and that (when
achieved) terminates behavior intended to achieve it

hasPurpose (equivalent)

Hear (5) 1. perceive (sound) via the auditory sense Hearing (equivalent)
Interference
(5)

1. the act of hindering or obstructing or impeding inhibits (subsuming)

Internal (5) 1. happening or arising or located within some limits or especially
surface; “internal organs”

Contains (equivalent)

Load (9) 1. a quantity that can be processed or transported at one time; “the
system broke down under excessive loads”

ConstantQuantity (subsuming)

Long-term
memory (1)

1. your general store of remembered information Remembering (subsuming)

Look (10) 1. perceive with attention, direct one’s gaze toward; “Look at your
child”

Looking (equivalent)

Listen (3) 1. hear with intention; “listen to the sound of this cello” Listening (equivalent)
Memory (5) 1. The cognitive process whereby past experience is remembered Remembering (equivalent)
Modality (5) 1. sensory system (a particular sense) capability (subsuming)
Modulation
(5)

1. the act of modifying or adjusting according to due measure and
proportion

Process (subsuming)

Object (5) 1. a tangible and visible entity; an entity that can cast a shadow; “it was
full of rackets, balls and other objects”

CorpuscularObject (equivalent)

2. the focus of cognitions or feelings; “objects of thought” patient (subsuming)
Performance
(5)

1. the act of performing; of doing something successfully; using
knowledge as distinguished from merely possessing it; “experience
generally improves performance”

IntentionalProcess (subsuming)

Response (7) 1. a bodily process occurring due to the effect of some antecedent
stimulus or agent; “a bad reaction to the medicine”; “his responses have
slowed with age”

Cause (equivalent)

Salient (3) 1. having a quality that thrusts itself into attention; “salient traits” SubjectiveAssessmentAttribute
(subsuming)

(Continued on next page)
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Search (4) 1. inquire into; “He searched for information on his relatives on the
web”;

Investigating (subsuming)

2. try to locate or discover, or try to establish the existence of; “The
police are searching for clues”

Pursuing (equivalent)

Select (1) 1. pick out, select, or choose from a number of alternatives; “Take any
one of these cards”

Selecting (equivalent)

See (24) 1. perceive by sight or have the power to perceive by sight Seeing (equivalent)
Short-term
memory (1)

1. what you can repeat immediately after perceiving it Remembering (subsuming)

Space (1) 1. the unlimited expanse in which everything is located; “they tested his
ability to locate objects in space”

SpaceRegion (equivalent)

Task (2) 1. any piece of work that is undertaken or attempted; “he prepared for
great undertakings”

IntentionalProcess (subsuming)

Time (10) 1. the continuum of experience in which events pass from the future
through the present to the past

TimeMeasure (subsuming)

Vigilance (2) 1. the process of paying close and continuous attention; “vigilance is
especially susceptible to fatigue”

Perception (subsuming)

Working
memory (1)

1. memory for intermediate results that must be held during thinking Remembering (subsuming)

Appendix B

Premises regarding attention

Attention
Attention is the faculty or power of mental concentration (WordNet)
Attention is the process whereby a person concentrates on some features of the environment to the (relative) exclusion of
others (WordNet)

Hearing perceives sound via the auditory sense (WordNet, FrameNet, SUMO)
Listening hears with intention (WordNet, FrameNet, SUMO)
Seeing perceives by sight or has the power to perceive by sight (WordNet, FrameNet, SUMO)
Looking perceives with attention (WordNet, FrameNet, SUMO)
Vigilance is the process of paying close and continuous attention (WordNet)

External attention

External attention selects and modulates sensory information (Chun et al., 2011)
An Object is a tangible and visible entity; an entity that can cast a shadow (WordNet)
A Feature is a prominent attribute or aspect of something (WordNet)
Modality is a particular sensory system (WordNet)
Space is the unlimited expanse in which everything is located (WordNet)
Time is the continuum of experience in which events pass from the future through the present to the past (WordNet)
Select is to choose from a number of alternatives (WordNet)
Modulation is the act of modifying or adjusting according to due measure and proportion (WordNet)

Internal attention

Internal attention selects, modulates, and maintains internally generated information (Chun et al., 2011)
A Task is any piece of work that is undertaken or attempted (WordNet)
A Respones is a bodily process occurring due to the effect of some antecedent stimulus or agent (WordNet)
Remembering is the class of psychological process which involve the recollection of prior experiences and/or of
knowledge which was previously acquired (SUMO)

Long-term memory is your general store of remembered information (WordNet)
Short-term memory is the reproduction, recognition, or recall of a limited amount of material after a period of about
10–30 s (APA Dictionary)

Working memory is memory for intermediate results that must be held during thinking (WordNet)
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The Baddeley working memory model includes as components a phonological loop, a visuospatial scratchpad, an
episodic buffer, and a central executive (Baddeley, 2000)

The central executive in Baddeley’s working memory model controls attention (Baddeley, 2000)

Capacity

Capacity is the maximum ability of an individual to receive or retain information and knowledge or to function in
mental or physical tasks (APA Dictionary)

An allocation policy distributes mental effort across simultaneously performed tasks (Kahneman, 1973)
Performance on simultaneous tasks deteriorates when the total demand on mental capacity exceeds available capacity
(Kahneman, 1973)

Chunking is the process by which the mind sorts information into small, easily digestible units (chunks) that can be
retained in short-term memory (APA Dictionary)

The capacity of short-term memory varies from 5 to 9 chunks of information (Miller, 1956)
Both processing and storage place demands on the limited capacity of working memory (Cowan, 2005; Engle, 2002)
Increasing the demand on processing in working memory decreases the amount of information that can be actively
maintained (Barrouillett et al., 2011)

There is no known limit on the capacity of long-term memory (Craik & Lockhart, 1972)

Cognitive load

Cognitive load is the relative demand imposed by a particular task, in terms of mental resources required (APA
Dictionary).

An early selection theory is any theory of attention proposing that an attentional filter blocks unattended messages early
in the processing stream, prior to stimulus identification (APA Dictionary)

A late selection theory is any theory of attention proposing that selection occurs after stimulus identification (APA
Dictionary)

Selecting stimuli at an early stage based on sensory information requires less mental effort than selecting stimuli at a late
stage based on meaning (Johnston & Heinz, 1978)

An automatic action is an act that is performed without requiring attention or conscious awareness (APA Dictionary)
Automatic processing does not cause interference with other tasks (Posner & Snyder, 1975)
Some component skills required to perform complex tasks such as reading require automatic processing in order to
prevent cognitive overload (LaBerge & Samuels, 1974)

Selection

Bottom-up processing proceeds from the data in the stimulus input to higher level processes, such as recognition,
interpretation, and categorization (APA Dictionary)

Top-down processing proceeds from a hypothesis about what a stimulus might be to a decision about whether the
hypothesis is supported by an incoming stimulus (APA Dictionary)

Physical salience, current goals, and selection history influence stimulus selection (Awh et al., 2012)
Salient is having a quality that thrusts itself into attention (WordNet)
Selection history is the bias to prioritize items that have been previously attended in a given context (Awh et al., 2012)
Involuntary attention is attention that is captured by a prominent stimulus, for example in the peripheral visual field,
rather than by deliberately applied or focused by the individual (APA Dictionary)

Automatic processing occurs without intention (Posner & Snyder, 1975)
An uninformative perceptual cue can attract attention when it contains a feature used to identify the target (Folk et al.,
1992)

Conscious awareness

Awareness is consciousness of internal or external events or experiences (APA Dictionary)
Attention is necessary, but not sufficient, for conscious awareness (Cohen et al., 2012)
Automatic processing occurs without conscious awareness (Posner & Snyder, 1975)
Many high-level functions, including goal management and reasoning, can occur without conscious awareness (Hassin,
2013)
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