
Sigma: An Integrated Development Environment for
Logical Theories

Adam Pease1, Christoph Benzmüller1

Abstract. Sigma[1,2] is an open source environment for the
development of logical theories. It has been under development
and regular release for nearly a decade, and has been the
principal environment under which the SUMO[3] has been
created. We discuss its features and evolution, and explain why
it is an appropriate environment for the development of
expressive ontologies in first and higher order logic.

1 INTRODUCTION

There have been many environments created to support ontology
development[25]. The majority, at least in recent years, have
been to support creation of lightweight ontologies or taxonomies
in the OWL language.

There are a limited number of language constructs in a frame-
based or description-logic language. Frames have class
membership and slots. Slots can have values and restrictions.
The primary language construct is the taxonomy, which lends
itself easily to tree-based views and editors. This is similar to
object oriented language IDEs that typically have tree views for
the hierarchy, and may have visual editors that allow the user to
quickly create shells of code, based on the object taxonomy.
Many ontology developers start by developing their products in a
lightweight ontology editor that handles frame-based languages.
Ontology developers who are used to that paradigm may wonder
why Sigma does not offer an editing component as the primary

method for developing ontologies Most modern software
engineering however takes place in a text editor. Tools are an
important part of the development process, and can help improve
both productivity and quality. But the complexity of a modern
programming language prevents modern software development
from being reduced to simple forms entry and visual editors.

Modern and expressive languages for the development of
formal theories, such as SUO-KIF[19] and TPTP[14] have a
similar degree of expressiveness, in a broad sense, to a modern
programming language. For that reason, we believe that the
appropriate role for a knowledge engineering environment is in
browsing, inference, analysis and other functions, rather than, at
least primarily, authoring and editing.

There is promise in creating editing modes for text editors
appropriate for knowledge engineering[26]. One challenge
however is that the choice of a text editor, is, for a professional
programmer, a very personal, and often a very strongly held
preference. To the extent that knowledge engineers are also
programmers, it will be difficult to create any environment so
compelling that it will cause them to switch text editors. One
alternative would be to capture just a portion of the "market" by
working to add appropriate modes to just one text editor.
Another would be to apply very significant resources, that do not
appear yet to exist in the marketplace, to create modes in several
powerful editors. For these reasons also, we have focused on
tools other than text editing modes.

1 Articulate Software, Angwin, CA. Email: {apease, cbenzmueller}@articulatesoftware.com.
The second author is currently supported by the German ResearchFoundation (DFG) under grant BE 2501/6-1.

Figure 1: Major Sigma Functions

Also in keeping with the modern software development
model, we have utilized the Concurrent Version System (CVS)
for collaborative ontology development. Developers are
typically given authority over one or more ontologies, required
to check in progress at least weekly so that other developers can
sync up with their changes. This has also resulted in a detailed
public record of the development and evolution of the Suggested
Upper Merged Ontology (SUMO) [22]

While Sigma was created to support SUMO, that is by no
means the only theory that it can handle. Sigma works on
knowledge bases that can be composed from various files
selected by the user. Those files can be coded in a small number
of different formal languages, including OWL, as well as SUO-
KIF. The Sigma user can easily work with very small theories or
very large ones by composing only the theories that are needed
for the work at hand. A typical use of Sigma would involve
loading just the upper level of SUMO and whatever domain
theory is needed for the user's chosen application area.

Tools within Sigma (Figure 1) can be broadly segmented into
several groups, (1) browsing and display, (2) analysis and
debugging, (3) inference, and (4) mapping, merging and
translation. We describe each of these topics in the following
sections, but first give a very brief introduction to the SUMO,
which is the logical theory Sigma was initially developed to
support.

2 SUMO

The Suggested Upper Merged Ontology [3,10] began as just
an upper level ontology encoded in first order logic. The logic
has expanded to include higher order elements. SUMO itself is
now a bit of a misnomer as it refers to a combined set of
theories: (1) SUMO "proper", the original upper level, consisting
of roughly 1000 terms, 4000 axioms and including some 750
rules. (2) A MId-Level Ontology (MILO) of several thousand
additional terms and axioms that define them, covering
knowledge that is less general than those in SUMO. We should
note that there is no objective standard for what should be
considered upper level or not. All that can be said
(simplistically) is that terms appearing lower in a taxonomy
(more specific) are less general than those above. To avoid
pointless argument about what constitutes an "upper level" term,
we simply try to keep SUMO about 1000 terms with their
associated definitions, and any time content is added, the most
specific content, as measured by its having the lowest level in
the subclass hierarchy, is, if necessary, moved to MILO or a
domain ontology. (3) There are also a few dozen domain
ontologies on various topics including theories of economy,
geography, finance and computing. Together, all ontologies
total roughly 20,000 terms and 70,000 axioms. We might also
add a fourth group of ontologies which are theories that consist
largely of ground facts, semi-automatically created from other
sources and aligned with SUMO. These include YAGO[4],
which is the largest of these sorts of resources aligned with
SUMO.

SUMO has been mapped by hand to the WordNet lexicon[5].
Initially each term in SUMO proper was mapped and in later
phases all WordNet synsets appearing above a frequency
threshold in the Brown Corpus[7,8] were mapped to a roughly
equivalent term in SUMO's lower level ontologies. If a rough
equivalent didn't exist, one was created and defined. One caveat

is that some words in English are vague enough to defy logical
definition, so some such words still lack direct equivalences.

SUMO proper has a significant set of manually created
language display templates that allow terms and definitions to be
paraphrased in various natural languages, including non-western
character sets. These include Arabic, French, English, Czech,
Tagalog, German, Italian, Hindi, Romanian, Chinese (traditional
and simplified characters). Automatically generated natural
language paraphrases can be seen in the rightmost column of the
screen display given as Figure 2.

Take for example that we have the SUO-KIF statement that
(authors Dickens OliverTwistBook). We have the
following statements that have been coded to support the
paraphrasing of statements with the authors relation.

(format EnglishLanguage authors "%1 is %n the
&%author of %2")

(format it authors "%1 è l' &%autore di %2")
If a Sigma user has loaded this information in a knowledge

base, and English is selected as the presentation, the user will see
"Dickens is the author of Oliver Twist." next to the SUO-KIF
statement. If Italian is selected, the paraphrase will be "Dickens
è l'autore di Oliver Twist". Arguments to predicates are
recursively substituted for the %1, %2 etc parameter variables,
allowing much larger expressions to be constructed from more
complex logical expressions.

The Global WordNet effort [6,9] links lexicons in many
languages, following the same model of computational lexicon
development as the original English WordNet. Wordnets have
now been developed for some 40 languages. This rich set of
cross-linguistic links that includes SUMO has the promise of
being the basis for much work in language translation and
linguistics generally. A simple idea for taking advantage of
some of this work would be to expand the set of language
translations for individual terms available for SUMO.

SUMO is defined in the SUO-KIF language[19], which is a
derivative of the original Knowledge Interchange Format[20].

When we speak in this paper about a "formal theory", we
mean a theory, such as SUMO, in which the meaning of any
term is given only by the axioms in a logical language that use
that term. In contrast, in an informal ontology, terms must be
understood by recourse to human intuitions or understandings
based on natural language term names, or natural language
definitions.

3 BROWSING and DISPLAY

Sigma was originally just a display tool. Its original, and still
most heavily used function is for creating hyperlinked sets of
formatted axioms that all contain a particular term (Figure 1).
Clicking on a term in turn gives a hyperlinked display of all the
axioms that contain the new term. Next to each axiom is given
the file and line(s) where the axiom was written. Also, shown is
an automatically generated natural language paraphrase of each
axiom. While the language generation component is relatively
rudimentary, it gains significant power when tied to a rich
ontology, in this case, SUMO. Much productive work remains to
extend the functionality of this component to take into account
the latest work in language generation. In particular, significant
improvement would come from natural use of prepositions in
paraphrasing statements about actions and the participants in
actions.

In 2008 we added a simplified browser view that may be
more appropriate for users who are transitioning from use of
frame and description logic languages. It gives prominence to a
tree view of the subclass hierarchy and presents binary relations
in a simple tabular format, relegating rules to an area lower in
the browser pane, and rendering them in the natural language
paraphrase form only.

Sigma includes a tree browser display. In contrast to many
ontologies developed in frame languages, SUMO has several
hierarchies that can be used to organize and display the theory.
These include hierarchies of physical parts, relations, attributes,
processes and others. As such, the tree browser allows the user
to select any transitive binary relation as the link by which the
hierarchy display is created.

4 ANALYSIS and DEBUGGING

Sigma includes a number of specialized and general tools for
ensuring ontology quality. The ultimate tool for quality
checking on a formal ontology is theorem proving. However,
there is no escape from the reality that on first- and higher-order

theories, a theorem prover is not guaranteed to find all
contradictions that exist. So in a practical system, there must be
a combination of special purpose tests that are complete, and
general purpose testing which is incomplete.

We will discuss theorem proving in the following section, so
in this section we describe the various special case tests that we
have found to be useful, and included in Sigma. While the
number of possible tests is potentially infinite, there are a
number of common problems that result from errors that are easy
to make. The special case tests aim to cover these most common
cases.

The SUMO-WordNet mappings also offer the opportunity to
find problems exposed by differences in the two products. We
believe that the two hierarchies should necessarily be
isomorphic. A formal theory is a human engineered product,
largely free of redundancy, and which can be edited to remove
any kind of bias that is recognized by the developers. A formal
theory can also contain concepts which are not lexicalized in any
language. This is especially valuable at the upper levels, in
which linguistic elements are so vague or ambiguous they cannot
serve as a direct model for formalization. Being able to create
new terms at will, when needed to formalize important notions in

Figure 2: Sigma browsing screen

the world, is an important characteristic of a formal theory, and
makes it possible to have constructs which are clear, and
efficient for representation as well as inference.

There are two special case tests for errors. We test for terms
without a root in the subclass hierarchy at the term Entity, which
is the topmost term in SUMO. This commonly results from
either omitting a subclass or instance statement when defining a
new term, or by misspelling the name of the intended parent
term. The second special case test is for where two terms have
parents that are defined to be disjoint. In a large theory like
SUMO, it can be easy to lose track of this case, especially when
the ultimately conflict may be between terms that are many
levels up in the subclass hierarchy.

There are also a number of tests for cases that are indicative
of a problem, yet not strictly an error that would result in a
logical contradiction. The first of these is for terms lacking
documentation. In theories under construction, theories that are
the results of importing and merging another ontology, or simply
for large lists of domain instances, like city names, it may be
reasonable, temporary, or expected for such terms to lack
documentation. But this does often reflect an outright error,
where a term name was simply misspelled in the documentation
definition, or in some other axiom.

We test for cases where terms do not appear in any rules.
This again is common in collections of instance-level facts, but
undesirable for many terms, where it should be possible to define
precisely the intended meaning of the term with a small number
of formal rules, as well as statements like class membership.

Because knowledge bases are often composed from SUMO's
general and domain specific component ontologies, it is
desirable to limit dependencies among the files as much as
possible. For that reason we include a tool to specify
dependencies between pairs of files. It is typically most
desirable at least to ensure that dependencies are only from one
file to another, and not between both files. All domain files will
of course depend at least upon SUMO proper, since they form a
single integrated theory that is decomposed into separate files for
convenience and efficiency of inference.

Diagnostics are provided for the SUMO-WordNet mappings.
Sigma finds WordNet synsets without mapped formal terms and
those for which a formal term is provided, but is not found in the
current loaded knowledge base. This helps to find cases where
terms have been changed or renamed and the mappings not
updated. Most significant is the taxonomy comparison
component. Given that we have terms A and B in SUMO and
synsets X and Y in WordNet, if A is mapped to X and B to Y,
Sigma checks whether if B is a subclass of A then Y is also a
hyponym of X. The reverse case is also checked. It is not always
the case that a hierarchy mismatch is an error. SUMO has a
much richer set of relations than WordNet, as is appropriate for a
formal ontology. A linguistic product must focus on linguistic
relations that are directly evident in language. For example,
WordNet considers a "plumber" to be a "human", whereas
SUMO considers plumber to be an occupational position, and
therefore an attribute that holds true about a particular human at
a particular time.

5 INFERENCE

Since 2003, Sigma has used an open-source, customized version
of the Vampire theorem prover called KIF-Vampire. Because

SUMO has contained a limited number of higher-order
constructs, and Vampire is strictly a first order prover, we have
employed a number of pre-processing steps to translate SUMO
into the more limited strict first order interpretation that Vampire
(and other provers) can handle. These steps include (1) creating
two approaches for removing variables from the predicate
position. Our first approach was to add a "dummy" predicate to
all clauses. This however resulted in worse performance for
provers that give special indexing priority to the predicate when
searching the proof space. The second approach was to
instantiate every predicate variable with all possible values for
predicates in the knowledge base that meet the type restrictions
that may be implied by the axiom. For example,
in the following axiom, the axiom will be duplicated with the
variable ?REL being instantiated with every TransitiveRelation.

(<=>
 (instance ?REL TransitiveRelation)
 (forall (?INST1 ?INST2 ?INST3)
 (=>
 (and
 (?REL ?INST1 ?INST2)
 (?REL ?INST2 ?INST3))
 (?REL ?INST1 ?INST3))))

This results in an automated expansion of the number of axioms,
but does give good performance. One limitation however is that
the semantics of predicate variables is thereby limited to the set
of predicates existing in the knowledge base, rather than ranging
over all possible predicates.

In preprocessing step (2) we turn embedded higher order
formulas into uninterpreted lists of symbols. This removes most
of the semantics of such statements, including the semantics of
logical operators, but does at least allow for unification, thereby
giving the appearance of higher order reasoning in very limited
situations. In step (3) Sigma translates SUMO basic arithmetic
functions into the native symbols required by KIF-Vampire. For
step (4) we note that SUMO includes row variables [11], which
are akin to the LISP @REST reference for variable-arity
functions. We treat these as a "macro" and expand each axiom
with a row variable into several axioms with one to seven
variables for each occurrence of a row variable. In the few cases
where axioms have two row variables, this can result in 48 new
axioms. This limits the semantics of the row variables, but only
to the cases that are found in practice.

Since we wish to keep Sigma as a completely open source
system, we have not been able to upgrade to subsequent versions
of Vampire, which are not open source, resulting in an inference
component that is now somewhat out of date with respect to the
state of the art. We have worked to integrate the TPTPWorld
suite that has many different theorem provers, all operating
under a common interface[12]. The different provers do
however have different performance characteristics, and some do
not provide proofs, so using this component does require a bit
more expertise along with more choice. It also offers the
capability to use the servers at U. Miami to run the user's
inferences, which can be beneficial for those who may not have
powerful computers at their location.

Integration with TPTP added a new first order language
capability to Sigma for ontology reading and for export[13]. It
also highlighted a limitation of Sigma until that point. Although
SUMO has types defined for all relations, the logic itself is not
typed. That meant that provers would not necessarily take

advantage of type restrictions in limiting their search space, and,
in certain cases, could result in incorrect inferences, when
inappropriate types were applied in finding solutions to queries.
A theorem prover was free to use inappropriate types and then
find a contradiction with SUMO's type restrictions, resulting in
an inconsistent knowledge base. To solve this problem, we
added a pre-processor which adds type restrictions as a new
precondition to every rule. These type restrictions are deduced
by collecting the most specific type restriction implied by the use
of each variable as the argument to a relation in the given axiom.

Combining the automatic generation of type restrictions on
axioms with the capability to generate TPTP language versions
of SUMO allowed us to use SUMO-based tests in the yearly
CASC competition[14,15], stretching theorem prover developers
to work on high performance results in a large new category of
problems in which inferences of modest difficulty must be done
on a very large knowledge base, where only a small number of
axioms are relevant to a given query. A key recent innovation is
the SUMO Inference Engine (SInE) [16]. which selects only the
subset of axioms likely to be relevant for a given query.

Another recent innovation is in translating SUMO to a typed
higher order form[18] for use by true higher order theorem
provers [17].The goal of this work is to better support higher
order aspects in SUMO, in particular, embedded formulas and
modal operators.

At the boundary of diagnostics and inference we have the
general case of using theorem proving to find contradictions.
Because first order proving is not guaranteed to find all problems
that may exist, Sigma includes a consistency check function that
leads the theorem prover to consider each axiom in a knowledge
base. Each axiom is loaded one by one starting with an empty
knowledge base. For each axiom, the prover is asked to
computer whether the knowledge base contradicts the axiom, or
is redundant with it. If the axiom doesn't create a contradiction,
it is asserted to the knowledge base and the next axiom is
considered. A contradiction will stop processing, since once a
contradiction is found, any further results may be nonsensical.
Redundancies are collected and reported once processing
finishes.

Similar to the CASC competition, but on a much smaller
scale, Sigma has the capability to run a series of SUMO-based
tests for any theorem prover it supports, reporting success or
failure and the time taken on each test.

6 MAPPING, MERGING and TRANSLATION

In addition to SUO-KIF and TPTP Sigma can also read and write
OWL format [21]. Since many lightweight ontologies are
currently being created in OWL, this feature opens up the use of
Sigma to a large community, and provides a straightforward
migration path to use of a stronger logic and more sophisticated
inference. It also opens up the use of SUMO to a community
that wishes to have simple and fast inference, since SUMO can
be (and is) exported with a lossy translation to an OWL version.
While the bulk of the SUMO axioms are not directly expressible
in OWL, they can serve as informative comments (and in fact
are exported as human-readable comments) that serve to better
define terms for the human user than if they were simply
omitted.

We should note that a general philosophy during the
construction of SUMO was not to limit it to the theorem provers

or techniques available at the time of knowledge engineering. If
something needed to be stated to capture the semantics of a
concept, we used a logic expressive enough to state it. The idea
was that any statement too complicated for reasoning could at
least be used as a formal concept. It's always possible to leave
out complex statements in order to comply with the need for
faster or decidable inference. It is not possible, obviously, to
automatically create knowledge base content that does not exist,
once better inference capabilities become available. This
approach is paying off now that serious work is underway on
practical higher order reasoning.

Sigma also includes an export of facts in Prolog form. Once
Sigma generates a TPTP version of an ontology, the TPTPWorld
tools also handle a translation to Prolog that supports horn clause
rules. There is also a simple prototype capability for exporting
SQL statements for database creation and population from
Sigma.

The growing availability and coverage of lightweight
taxonomies that cover domain specific knowledge, and the
corresponding phenomenon of "linked data" as a community
objective has encouraged the addition of an ontology mapping
and merging capability to Sigma. It is based on earlier work on
a stand-alone tool [23]. In mapping SUMO to simple
taxonomies there is often very little information for the machine
to use to determine what matches might exist. The principal
problem appears to be massive numbers of false positive
matches. A simple algorithm appears to do as well in practice as
a more sophisticated one, since the bulk of effort is still spent by
a human in selecting accurate matches. Having a simple and
easy user interface appears to provide more leverage than an
incrementally better matching algorithm. The Sigma matching
tool has been used to create an initial alignment with the
lightweight Open Biomedical Ontologies (OBO) [24] that
consist mostly of taxonomic relations, with no rules and few
axioms besides class membership.

7 SUMMARY and CONCLUSIONS

Sigma has served two main purposes. It is a practical tool
that has supported the development of the SUMO. It is also a
toolkit and testbed that is used to support experiments in
ontology application and logical reasoning. Sigma has co-
evolved with SUMO with each becoming more sophisticated and
extensive as they progressed. The regular open source release of
both products has and will continue to form a unique resource
for academic and commercial researchers and practitioners
engaged in ontology, natural language understanding and formal
reasoning.

REFERENCES

[1] Sigma web site http://sigmakee.sourceforge.net
[2] Pease, A., (2003). The Sigma Ontology Development Environment,

in Working Notes of the IJCAI-2003 Workshop on Ontology and
Distributed Systems. Volume 71 of CEUR Workshop Proceeding
series.

[3] Niles, I., & Pease, A., (2001), Toward a Standard Upper Ontology, in
Proceedings of the 2nd International Conference on Formal Ontology
in Information Systems (FOIS-2001), Chris Welty and Barry Smith,
eds., pp2-9.

[4] de Melo, G., Suchanek, F., and Pease, A., (2008). Integrating YAGO
into the Suggested Upper Merged Ontology. In Proceedings of the
20th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI 2008). IEEE Computer Society, Los Alamitos,
CA, USA.

[5] Niles, I., and Pease, A., (2003). Linking Lexicons and Ontologies:
Mapping WordNet to the Suggested Upper Merged Ontology,
Proceedings of the IEEE International Conference on Information
and Knowledge Engineering, pp 412-416.

[6] Pease, A., and Fellbaum, C., (2010) Formal Ontology as Interlingua:
The SUMO and WordNet Linking Project and GlobalWordNet, In:
Huang, C. R. et al (eds.) Ontologies and Lexical Resources.
Cambridge: Cambridge University Press, ISBN-13: 9780521886598.

[7] Kucera and Francis, W.N. (1967). Computational Analysis of
Present-Day American English. Providence: Brown University Press.

[8] Landes S., Leacock C., and Tengi, R.I. (1998) “Building semantic
concordances”. In Fellbaum, C. (ed.) (1998) WordNet: An Electronic
Lexical Database. Cambridge (Mass.): The MIT Press.

[9] Global WordNet web site http://www.globalwordnet.org
[10] SUMO web site http://www.ontologyportal.org
[11] Hayes, P., and Menzel, C., (2001). A Semantics for Knowledge

Interchange Format, in Working Notes of the IJCAI-2001 Workshop
on the IEEE Standard Upper Ontology.

[12] Trac, S., Sutcliffe, G., and Pease, A., (2008) Integration of the
TPTPWorld into SigmaKEE. Proceedings of IJCAR '08 Workshop
on Practical Aspects of Automated Reasoning (PAAR-2008).
Volume 373 of the CEUR Workshop Proceedings.

[13] Pease, A., and Sutcliffe, G., (2007) First Order Reasoning on a
Large Ontology, in Proceedings of the CADE-21 workshop on
Empirically Successful Automated Reasoning on Large Theories
(ESARLT).

[14] Sutcliffe. G., (2007) TPTP, TSTP, CASC, etc. In V. Diekert, M.
Volkov, and A. Voronkov, editors, Lecture Notes in Computer
Science, Springer Berlin / Heidelberg, Volume 4649/2007, ISBN
978-3-540-74509-9, pp 6-22.

[15] Pease, A., Sutcliffe, G., Siegel, N., and Trac, S., (2010). Large
Theory Reasoning with SUMO at CASC, AI Communications,
Volume 23, Number 2-3 / 2010, Special issue on Practical Aspects of
Automated Reasoning, IOS Press, ISSN 0921-7126, pp 137-144.

[16] Hoder, K. (2008) Automated Reasoning in Large Knowledge Bases,
PhD thesis, Charles University, Prague, Czech Republic. See
http://is.cuni.cz/eng/studium/dipl_st/index.php?
doo=detail&did=49052

[17] Benzmüller, C., and Pease., A., (2010). Progress in Automating
Higher Order Ontology Reasoning, Proceedings of the Second
International Workshop on Practical Aspects of Automated
Reasoning, Boris Konev and Renate A. Schmidt and Stephan
Schulz, editors, Edinburgh, UK, July 14, 2010, CEUR Workshop
Proceedings.

[18] Sutcliffe, G., and Benzmüller, C., (2010) Automated Reasoning in
Higher-Order Logic using the {TPTP THF} Infrastructure, Journal of
Formalized Reasoning, vol 3, no.1, pp1-27.

[19] Pease, A., (2009). Standard Upper Ontology Knowledge
Interchange Format, dated 6/18/2009. Available at
http://sigmakee.cvs.sourceforge.net/*checkout*/sigmakee/sigma/suo-
kif.pdf

[20] Genesereth, M., (1991). “Knowledge Interchange Format’’, In
Proceedings of the Second International Conference on the Principles
of Knowledge Representation and Reasoning, Allen, J., Fikes, R.,
Sandewall, E. (eds), Morgan Kaufman Publishers, pp 238-249.

[21] Sean Bechhofer, Frank van Harmelen, James A. Hendler, Ian
Horrocks, Deborah L. McGuinness, Peter F. Patel-Schneider, Lynn
Andrea Stein (Auth.), Mike Dean, Guus Schreiber (Ed.), OWL Web
Ontology Language Reference, World Wide Web Consortium,
Recommendation REC-owl-ref-20040210, February 2004.

[22] Pease, A., and Benzmüller, C., (2010) Ontology Archaeology: A
Decade of Effort on the Suggested Upper Merged Ontology, in
Proceeding of The ECAI-10 Workshop on Automated Reasoning
about Context and Ontology Evolution (ARCOE-10), A.Bundy and

J.Lehmann and G.Qi and I.J.Varzinczak editors, August 16-17,
Lisbon, Portugal.

[23] Li, J., (2004) LOM: A Lexicon-based Ontology Mapping Tool,
 in Proceedings of the Performance Metrics for Intelligent Systems

conference (PerMIS).
[24] Smith B, Ashburner M, Rosse C, Bard C, Bug W, Ceusters W,

Goldberg L J, Eilbeck K, Ireland A, Mungall C J, The OBI
Consortium, Leontis N, Rocca-Serra P, Ruttenberg A, Sansone S-A,
Scheuermann R H, Shah N, Whetzel P L and Lewis S (2007). "The
OBO Foundry: coordinated evolution of ontologies to support
biomedical data integration", Nature Biotechnology 25, 1251 - 1255.

[25] Youn, S., and McLeod, D. Ontology Development Tools for
Ontology-Based Knowledge Management. Encyclopedia of E-
Commerce, E-Government and Mobile Commerce, Idea Group Inc.,
2006.

[26] David Aspinall. Proof General: A Generic Tool for Proof
Development. Tools and Algorithms for the Construction and
Analysis of Systems, Proc TACAS 2000, LNCS 1785.

