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Abstract.  Sigma[1,2]  is  an open source environment  for  the 
development of logical theories.  It has been under development 
and  regular  release  for  nearly  a  decade,  and  has  been  the 
principal  environment  under  which  the  SUMO[3]  has  been 
created. We discuss its features and evolution, and explain why 
it  is  an  appropriate  environment  for  the  development  of 
expressive ontologies in first and higher order logic.

1 INTRODUCTION

There have been many environments created to support ontology 
development[25].   The majority,  at  least  in recent years,  have 
been to support creation of lightweight ontologies or taxonomies 
in the OWL language.  

There are a limited number of language constructs in a frame-
based  or  description-logic  language.   Frames  have  class 
membership and slots.  Slots can have values and restrictions. 
The primary language construct is the taxonomy, which lends 
itself easily to tree-based views and editors.  This is similar to 
object oriented language IDEs that typically have tree views for 
the hierarchy, and may have visual editors that allow the user to 
quickly  create  shells  of  code,  based  on  the  object  taxonomy. 
Many ontology developers start by developing their products in a 
lightweight ontology editor that handles frame-based languages. 
Ontology developers who are used to that paradigm may wonder 
why Sigma does not offer an editing component as the primary 

method  for  developing  ontologies   Most  modern  software 
engineering however takes place in a text editor.  Tools are an 
important part of the development process, and can help improve 
both productivity and quality.  But the complexity of a modern 
programming language prevents modern software development 
from being reduced to simple forms entry and visual editors.  

Modern  and  expressive  languages  for  the  development  of 
formal  theories,  such  as  SUO-KIF[19]  and  TPTP[14]  have  a 
similar degree of expressiveness, in a broad sense, to a modern 
programming  language.  For  that  reason,  we  believe  that  the 
appropriate role for a knowledge engineering environment is in 
browsing, inference, analysis and other functions, rather than, at 
least primarily, authoring and editing.

There is promise in creating editing modes for  text editors 
appropriate  for  knowledge  engineering[26].   One  challenge 
however is that the choice of a text editor, is, for a professional 
programmer,  a  very  personal,  and  often  a  very  strongly  held 
preference.   To  the  extent  that  knowledge  engineers  are  also 
programmers, it will be difficult to create any environment so 
compelling that it will cause them to switch text editors.  One 
alternative would be to capture just a portion of the "market" by 
working  to  add  appropriate  modes  to  just  one  text  editor. 
Another would be to apply very significant resources, that do not 
appear yet to exist in the marketplace, to create modes in several 
powerful editors.  For these reasons also, we have focused on 
tools other than text editing modes.
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Figure 1: Major Sigma Functions



Also  in  keeping  with  the  modern  software  development 
model, we have utilized the Concurrent Version System (CVS) 
for  collaborative  ontology  development.   Developers  are 
typically given authority over one or more ontologies, required 
to check in progress at least weekly so that other developers can 
sync up with their changes.  This has also resulted in a detailed 
public record of the development and evolution of the Suggested 
Upper Merged Ontology (SUMO) [22]

While Sigma was created to  support SUMO, that  is by no 
means  the  only  theory  that  it  can  handle.   Sigma  works  on 
knowledge  bases  that  can  be  composed  from  various  files 
selected by the user.  Those files can be coded in a small number 
of different formal languages, including OWL, as well as SUO-
KIF.  The Sigma user can easily work with very small theories or 
very large ones by composing only the theories that are needed 
for the work at  hand.  A typical use of Sigma would involve 
loading  just  the  upper  level  of  SUMO and whatever  domain 
theory is needed for the user's chosen application area.

Tools within Sigma (Figure 1) can be broadly segmented into 
several  groups,  (1)  browsing  and  display,  (2)  analysis  and 
debugging,  (3)  inference,  and  (4)  mapping,  merging  and 
translation.  We describe each of these topics in the following 
sections, but first give a very brief introduction to the SUMO, 
which  is  the  logical  theory  Sigma was  initially  developed  to 
support.

2 SUMO

The Suggested Upper Merged Ontology [3,10] began as just 
an upper level ontology encoded in first order logic.  The logic 
has expanded to include higher order elements.  SUMO itself is 
now  a  bit  of  a  misnomer  as  it  refers  to  a  combined  set  of 
theories: (1) SUMO "proper", the original upper level, consisting 
of  roughly 1000 terms,  4000 axioms and including some 750 
rules.  (2) A MId-Level Ontology (MILO) of several thousand 
additional  terms  and  axioms  that  define  them,  covering 
knowledge that is less general than those in SUMO.  We should 
note  that  there  is  no  objective  standard  for  what  should  be 
considered  upper  level  or  not.   All  that  can  be  said 
(simplistically)  is  that  terms  appearing  lower  in  a  taxonomy 
(more  specific)  are  less  general  than  those  above.   To  avoid 
pointless argument about what constitutes an "upper level" term, 
we  simply  try  to  keep  SUMO  about  1000  terms  with  their 
associated definitions, and any time content is added, the most 
specific content, as measured by its having the lowest level in 
the subclass  hierarchy,  is,  if  necessary,  moved to MILO or  a 
domain  ontology.  (3)  There  are  also  a  few  dozen  domain 
ontologies  on  various  topics  including  theories  of  economy, 
geography,  finance  and  computing.   Together,  all  ontologies 
total roughly 20,000 terms and 70,000 axioms. We might also 
add a fourth group of ontologies which are theories that consist 
largely of ground facts,  semi-automatically created from other 
sources  and  aligned  with  SUMO.   These  include  YAGO[4], 
which  is  the  largest  of  these  sorts  of  resources  aligned  with 
SUMO.

SUMO has been mapped by hand to the WordNet lexicon[5]. 
Initially each term in SUMO proper was mapped and in later  
phases  all  WordNet  synsets  appearing  above  a  frequency 
threshold in the Brown Corpus[7,8] were mapped to a roughly 
equivalent term in SUMO's lower level ontologies.  If a rough 
equivalent didn't exist, one was created and defined.  One caveat 

is that some words in English are vague enough to defy logical 
definition, so some such words still lack direct equivalences.

SUMO  proper  has  a  significant  set  of  manually  created 
language display templates that allow terms and definitions to be 
paraphrased in various natural languages, including non-western 
character sets.   These include Arabic,  French,  English,  Czech, 
Tagalog, German, Italian, Hindi, Romanian, Chinese (traditional 
and  simplified  characters).  Automatically  generated  natural 
language paraphrases can be seen in the rightmost column of the 
screen display given as Figure 2.

Take for example that we have the SUO-KIF statement that 
(authors   Dickens   OliverTwistBook).   We  have  the 
following  statements  that  have  been  coded  to  support  the 
paraphrasing of statements with the authors relation.

(format EnglishLanguage authors "%1 is %n the 
&%author of %2")

(format it authors "%1 è l' &%autore di %2")
If a Sigma user has loaded this information in a knowledge 

base, and English is selected as the presentation, the user will see 
"Dickens is the author of Oliver Twist." next to the SUO-KIF 
statement.  If Italian is selected, the paraphrase will be "Dickens 
è  l'autore  di  Oliver  Twist".   Arguments  to  predicates  are 
recursively substituted for the %1, %2 etc parameter variables, 
allowing much larger expressions to be constructed from more 
complex logical expressions.

The  Global  WordNet  effort  [6,9]  links  lexicons  in  many 
languages, following the same model of computational lexicon 
development as the original English WordNet.  Wordnets have 
now been developed for some 40 languages.  This rich set  of 
cross-linguistic  links that  includes  SUMO has  the  promise  of 
being  the  basis  for  much  work  in  language  translation  and 
linguistics  generally.   A  simple  idea  for  taking  advantage  of 
some  of  this  work  would  be  to  expand  the  set  of  language 
translations for individual terms available for SUMO.

SUMO is defined in the SUO-KIF language[19], which is a 
derivative of the original Knowledge Interchange Format[20].

When we speak in  this  paper  about  a  "formal  theory",  we 
mean a theory,  such as SUMO, in which the meaning of any 
term is given only by the axioms in a logical language that use 
that term.  In contrast, in an informal ontology, terms must be 
understood by recourse to  human intuitions or  understandings 
based  on  natural  language  term  names,  or  natural  language 
definitions.

3 BROWSING and DISPLAY

Sigma was originally just a display tool. Its original,  and still  
most heavily used function is for creating hyperlinked sets of 
formatted axioms that all  contain a particular term (Figure 1). 
Clicking on a term in turn gives a hyperlinked display of all the 
axioms that contain the new term.  Next to each axiom is given 
the file and line(s) where the axiom was written. Also, shown is 
an automatically generated natural language paraphrase of each 
axiom. While the language generation component is relatively 
rudimentary,  it  gains  significant  power  when  tied  to  a  rich 
ontology, in this case, SUMO. Much productive work remains to 
extend the functionality of this component to take into account 
the latest work in language generation.  In particular, significant 
improvement  would come from natural  use of  prepositions in 
paraphrasing  statements  about  actions  and  the  participants  in 
actions.



In  2008 we  added  a  simplified  browser  view that  may be 
more  appropriate  for  users  who are  transitioning from use of 
frame and description logic languages.  It gives prominence to a 
tree view of the subclass hierarchy and presents binary relations 
in a simple tabular format, relegating rules to an area lower in 
the browser pane,  and rendering them in the natural language 
paraphrase form only.

Sigma includes a tree browser display.  In contrast to many 
ontologies  developed  in  frame  languages,  SUMO has  several 
hierarchies that can be used to organize and display the theory. 
These include hierarchies of physical parts, relations, attributes, 
processes and others.  As such, the tree browser allows the user 
to select any transitive binary relation as the link by which the 
hierarchy display is created.

4 ANALYSIS and DEBUGGING

Sigma includes a  number of specialized and general tools  for 
ensuring  ontology  quality.   The  ultimate  tool  for  quality 
checking on a formal ontology is theorem proving.  However, 
there is no escape from the reality that on first- and higher-order 

theories,  a  theorem  prover  is  not  guaranteed  to  find  all 
contradictions that exist.  So in a practical system, there must be 
a  combination of  special  purpose tests  that  are  complete,  and 
general purpose testing which is incomplete.

We will discuss theorem proving in the following section, so 
in this section we describe the various special case tests that we 
have  found to  be  useful,  and  included  in  Sigma.   While  the 
number  of  possible  tests  is  potentially  infinite,  there  are  a 
number of common problems that result from errors that are easy 
to make.  The special case tests aim to cover these most common 
cases.

The SUMO-WordNet mappings also offer the opportunity to 
find problems exposed by differences in the two products.  We 
believe  that  the  two  hierarchies  should  necessarily  be 
isomorphic.  A  formal  theory  is  a  human engineered  product, 
largely free of redundancy, and which can be edited to remove 
any kind of bias that is recognized by the developers.  A formal 
theory can also contain concepts which are not lexicalized in any 
language.   This  is  especially  valuable  at  the  upper  levels,  in  
which linguistic elements are so vague or ambiguous they cannot 
serve as a direct model for formalization.  Being able to create 
new terms at will, when needed to formalize important notions in 

Figure 2: Sigma browsing screen



the world, is an important characteristic of a formal theory, and 
makes  it  possible  to  have  constructs  which  are  clear,  and 
efficient for representation as well as inference.

There are two special case tests for errors.  We test for terms 
without a root in the subclass hierarchy at the term Entity, which 
is  the  topmost  term in  SUMO.  This  commonly results  from 
either omitting a subclass or instance statement when defining a 
new term,  or  by misspelling the name of  the intended parent 
term. The second special case test is for where two terms have 
parents that are defined to be disjoint.   In a large theory like 
SUMO, it can be easy to lose track of this case, especially when 
the  ultimately  conflict  may  be  between  terms  that  are  many 
levels up in the subclass hierarchy.

There are also a number of tests for cases that are indicative 
of  a  problem,  yet  not  strictly  an  error  that  would  result  in  a 
logical  contradiction.   The  first  of  these  is  for  terms  lacking 
documentation.  In theories under construction, theories that are 
the results of importing and merging another ontology, or simply 
for large lists of domain instances, like city names,  it may be 
reasonable,  temporary,  or  expected  for  such  terms  to  lack 
documentation.   But  this  does  often  reflect  an  outright  error, 
where a term name was simply misspelled in the documentation 
definition, or in some other axiom.

We test  for cases where terms do not appear in  any rules.  
This again is common in collections of instance-level facts, but 
undesirable for many terms, where it should be possible to define 
precisely the intended meaning of the term with a small number 
of formal rules, as well as statements like class membership.

Because knowledge bases are often composed from SUMO's 
general  and  domain  specific  component  ontologies,  it  is 
desirable  to  limit  dependencies  among  the  files  as  much  as 
possible.   For  that  reason  we  include  a  tool  to  specify 
dependencies  between  pairs  of  files.   It  is  typically  most 
desirable at least to ensure that dependencies are only from one 
file to another, and not between both files.  All domain files will 
of course depend at least upon SUMO proper, since they form a 
single integrated theory that is decomposed into separate files for 
convenience and efficiency of inference.

Diagnostics are provided for the SUMO-WordNet mappings. 
Sigma finds WordNet synsets without mapped formal terms and 
those for which a formal term is provided, but is not found in the 
current loaded knowledge base.  This helps to find cases where 
terms  have  been  changed  or  renamed  and  the  mappings  not 
updated.   Most  significant  is  the  taxonomy  comparison 
component.  Given that we have terms A and B in SUMO and 
synsets X and Y in WordNet, if A is mapped to X and B to Y, 
Sigma checks whether if B is a subclass of A then Y is also a 
hyponym of X.  The reverse case is also checked. It is not always 
the case that a hierarchy mismatch is an error.  SUMO has a 
much richer set of relations than WordNet, as is appropriate for a 
formal ontology.  A linguistic product must focus on linguistic 
relations  that  are  directly  evident  in  language.  For  example, 
WordNet  considers  a  "plumber"  to  be  a  "human",  whereas 
SUMO considers plumber to be an occupational position,  and 
therefore an attribute that holds true about a particular human at 
a particular time.

5 INFERENCE

Since 2003, Sigma has used an open-source, customized version 
of the Vampire theorem prover called KIF-Vampire.  Because 

SUMO  has  contained  a  limited  number  of  higher-order 
constructs, and Vampire is strictly a first order prover, we have 
employed a number of pre-processing steps to translate SUMO 
into the more limited strict first order interpretation that Vampire 
(and other provers) can handle. These steps include (1) creating 
two  approaches  for  removing  variables  from  the  predicate 
position. Our first approach was to add a "dummy" predicate to 
all  clauses.   This  however  resulted in  worse performance  for 
provers that give special indexing priority to the predicate when 
searching  the  proof  space.   The  second  approach  was  to 
instantiate every predicate variable with all possible values for 
predicates in the knowledge base that meet the type restrictions 
that may be implied by the axiom.  For example,
in the following axiom, the axiom will be duplicated with the 
variable ?REL being instantiated with every TransitiveRelation.

(<=>
    (instance ?REL TransitiveRelation)
    (forall (?INST1 ?INST2 ?INST3)
        (=>
            (and
                (?REL ?INST1 ?INST2)
                (?REL ?INST2 ?INST3))
            (?REL ?INST1 ?INST3))))

This results in an automated expansion of the number of axioms, 
but does give good performance.  One limitation however is that 
the semantics of predicate variables is thereby limited to the set 
of predicates existing in the knowledge base, rather than ranging 
over all possible predicates.  

In  preprocessing  step  (2)  we  turn  embedded  higher  order 
formulas into uninterpreted lists of symbols.  This removes most 
of the semantics of such statements, including the semantics of 
logical operators, but does at least allow for unification, thereby 
giving the appearance of higher order reasoning in very limited 
situations. In step (3)  Sigma translates SUMO basic arithmetic 
functions into the native symbols required by KIF-Vampire. For 
step (4) we note that SUMO includes row variables [11], which 
are  akin  to  the  LISP  @REST  reference  for  variable-arity 
functions.  We treat these as a "macro" and expand each axiom 
with  a  row  variable  into  several  axioms  with  one  to  seven 
variables for each occurrence of a row variable.  In the few cases  
where axioms have two row variables, this can result in 48 new 
axioms.  This limits the semantics of the row variables, but only 
to the cases that are found in practice.

Since we wish to keep Sigma as a completely open source 
system, we have not been able to upgrade to subsequent versions 
of Vampire, which are not open source, resulting in an inference 
component that is now somewhat out of date with respect to the 
state of the art.  We have worked to integrate the TPTPWorld 
suite  that  has  many  different  theorem  provers,  all  operating 
under  a  common  interface[12].   The  different  provers  do 
however have different performance characteristics, and some do 
not provide proofs, so using this component does require a bit 
more  expertise  along  with  more  choice.   It  also  offers  the 
capability  to  use  the  servers  at  U.  Miami  to  run  the  user's 
inferences, which can be beneficial for those who may not have 
powerful computers at their location.

Integration  with  TPTP  added  a  new  first  order  language 
capability to Sigma for ontology reading and for export[13].  It 
also highlighted a limitation of Sigma until that point.  Although 
SUMO has types defined for all relations, the logic itself is not 
typed.   That  meant  that  provers  would  not  necessarily  take 



advantage of type restrictions in limiting their search space, and, 
in  certain  cases,  could  result  in  incorrect  inferences,  when 
inappropriate types were applied in finding solutions to queries. 
A theorem prover was free to use inappropriate types and then 
find a contradiction with SUMO's type restrictions, resulting in 
an  inconsistent  knowledge  base.   To  solve  this  problem,  we 
added  a  pre-processor  which  adds  type  restrictions  as  a  new 
precondition to every rule.  These type restrictions are deduced 
by collecting the most specific type restriction implied by the use 
of each variable as the argument to a relation in the given axiom.

Combining the automatic  generation of  type restrictions on 
axioms with the capability to generate TPTP language versions 
of  SUMO allowed us to  use SUMO-based tests in the yearly 
CASC competition[14,15], stretching theorem prover developers 
to work on high performance results in a large new category of 
problems in which inferences of modest difficulty must be done 
on a very large knowledge base, where only a small number of 
axioms are relevant to a given query. A key recent innovation is 
the SUMO Inference Engine (SInE) [16]. which selects only the 
subset of axioms likely to be relevant for a given query.

Another recent innovation is in translating SUMO to a typed 
higher  order  form[18]  for  use  by  true  higher  order  theorem 
provers [17].The goal of this work is to better support higher 
order aspects in SUMO, in particular, embedded formulas and 
modal operators.

At  the  boundary of  diagnostics  and inference  we  have the 
general  case  of  using  theorem proving  to  find  contradictions. 
Because first order proving is not guaranteed to find all problems 
that may exist, Sigma includes a consistency check function that 
leads the theorem prover to consider each axiom in a knowledge 
base.  Each axiom is loaded one by one starting with an empty 
knowledge  base.   For  each  axiom,  the  prover  is  asked  to 
computer whether the knowledge base contradicts the axiom, or 
is redundant with it.  If the axiom doesn't create a contradiction, 
it  is  asserted  to  the  knowledge  base  and  the  next  axiom  is 
considered.  A contradiction will stop processing, since once a 
contradiction is found, any further results may be nonsensical. 
Redundancies  are  collected  and  reported  once  processing 
finishes.

Similar  to  the  CASC competition,  but  on  a  much  smaller 
scale, Sigma has the capability to run a series of SUMO-based 
tests  for  any  theorem prover  it  supports,  reporting success  or 
failure and the time taken on each test.

6 MAPPING, MERGING and TRANSLATION

In addition to SUO-KIF and TPTP Sigma can also read and write 
OWL  format  [21].  Since  many  lightweight  ontologies  are 
currently being created in OWL, this feature opens up the use of 
Sigma  to  a  large  community,  and  provides  a  straightforward 
migration path to use of a stronger logic and more sophisticated 
inference.  It also opens up the use of SUMO to a community 
that wishes to have simple and fast inference, since SUMO can 
be (and is) exported with a lossy translation to an OWL version. 
While the bulk of the SUMO axioms are not directly expressible 
in OWL, they can serve as informative comments (and in fact 
are exported as human-readable comments) that serve to better 
define  terms  for  the  human  user  than  if  they  were  simply 
omitted.

We  should  note  that  a  general  philosophy  during  the 
construction of SUMO was not to limit it to the theorem provers 

or techniques available at the time of knowledge engineering. If 
something  needed  to  be  stated  to  capture  the  semantics  of  a  
concept, we used a logic expressive enough to state it.  The idea 
was that any statement too complicated for reasoning could at 
least be used as a formal concept.  It's always possible to leave 
out complex statements  in  order  to  comply with the need for  
faster or decidable inference.   It  is  not possible, obviously,  to 
automatically create knowledge base content that does not exist, 
once  better  inference  capabilities  become  available.   This 
approach is paying off now that serious work is underway on 
practical higher order reasoning.

Sigma also includes an export of facts in Prolog form.  Once 
Sigma generates a TPTP version of an ontology, the TPTPWorld 
tools also handle a translation to Prolog that supports horn clause 
rules. There is also a simple prototype capability for exporting 
SQL  statements  for  database  creation  and  population  from 
Sigma.

The  growing  availability  and  coverage  of  lightweight 
taxonomies  that  cover  domain  specific  knowledge,  and  the 
corresponding  phenomenon  of  "linked  data"  as  a  community 
objective has encouraged the addition of an ontology mapping 
and merging capability to Sigma.  It is based on earlier work on 
a  stand-alone  tool  [23].   In  mapping  SUMO  to  simple 
taxonomies there is often very little information for the machine 
to use to determine what  matches might  exist.   The principal 
problem  appears  to  be  massive  numbers  of  false  positive 
matches.  A simple algorithm appears to do as well in practice as  
a more sophisticated one, since the bulk of effort is still spent by 
a human in selecting accurate matches.   Having a simple and 
easy user  interface  appears  to  provide more leverage  than  an 
incrementally  better  matching algorithm. The Sigma matching 
tool  has  been  used  to  create  an  initial  alignment  with  the  
lightweight  Open  Biomedical  Ontologies  (OBO)  [24]  that 
consist  mostly of  taxonomic relations,  with no rules  and few 
axioms besides class membership.

7 SUMMARY and CONCLUSIONS

Sigma has served two main purposes.  It is a practical tool 
that has supported the development of the SUMO.  It is also a  
toolkit  and  testbed  that  is  used  to  support  experiments  in 
ontology  application  and  logical  reasoning.   Sigma  has  co-
evolved with SUMO with each becoming more sophisticated and 
extensive as they progressed.  The regular open source release of 
both products has and will continue to form a unique resource 
for  academic  and  commercial  researchers  and  practitioners 
engaged in ontology, natural language understanding and formal 
reasoning.
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