
Integration of the TPTPWorld into SigmaKEE

Steven Trac1, Geoff Sutcliffe1, and Adam Pease2

1University of Miami, USA 2Articulate Software, USA

Abstract. This paper describes the integration of the ATP support
of the TPTPWorld into the Sigma Knowledge Engineering Environment.
The result is an interactive knowledge based reasoning environment, with
strong knowledge management features, and access to modern state of
the art ATP systems for reasoning over knowledge bases.

1 Introduction

The Knowledge Based Reasoning (KBR) community within the field of Artificial
Intelligence has long conducted logical reasoning for decision support, planning
and many similar applications. The Automated Theorem Proving (ATP) com-
munity has grown more out of mathematical disciplines, and its applications
have tended to be in that realm. While the various uses of SNARK [12], e.g., [13,
21], are notable exceptions, there has not been significant use of ATP in KBR.
This work brings together the KBR tool SigmaKEE and the ATP support of the
TPTPWorld. The Sigma Knowledge Engineering Environment (SigmaKEE) [7]
provides a mature platform for browsing and querying a knowledge base, often
the Suggested Upper Merged Ontology (SUMO) [6]. The TPTPWorld provides
well established standards, systems, and tools for first-order reasoning, stemming
from the Thousands of Problems for Theorem Provers (TPTP) problem library
[16]. While SigmaKEE has strong knowledge management features, it lacks the
reasoning capabilities found in state of the art ATP systems. Conversely, while
modern ATP systems are capable of proving hard theorems, they have limited
features for interfacing with users of large knowledge bases. The integration of
the TPTPWorld into SigmaKEE forms an interactive KBR environment, with
strong knowledge management features, and access to modern state of the art
ATP systems for reasoning over knowledge bases.

This paper is organized as follows: Sections 2 and 3 provide the necessary
background about SigmaKEE and the TPTPWorld. Section 4 describes their in-
tegration, including extensions added to meet the needs of SigmaKEE users.
Section 5 shows a sample use of the integrated system.

2 SigmaKEE

The Sigma Knowledge Engineering Environment (SigmaKEE) is a KBR environ-
ment for developing and using logical theories. It was created to support the
Suggested Upper Merged Ontology (SUMO), which is written in a variant of



the Knowledge Interchange Format (KIF) language [4] called Standard Upper
Ontology Knowledge Interchange Format (SUO-KIF) [7]. SigmaKEE runs as an
Apache Tomcat service, providing a browser interface to users. The main com-
ponents are written in Java, and the user interface is generated by JSP. Users
can upload a knowledge base for browsing and querying. An uploaded knowledge
base is indexed for high performance browsing and searching. For ontology-like
knowledge bases, which have a tree structure, a graph browser is provided. Fig-
ure 1 shows the graph browser interface for the top layers of the SUMO. Results
from queries are presented in a hyperlinked KIF format that provides linkages
back into the knowledge base, as shown in the example in Section 5.

The existing version of SigmaKEE includes a customized version of Vampire
[10]. Among state of the art first order logical theorem provers available at the
time of SigmaKEE’s original development, only this version of Vampire, which is
now 5 years old, had all the features required for theorem proving applications
in SigmaKEE:

– The ability to extract an answer to a query as bindings of outermost exis-
tentially quantified variables in a conjecture.

– The ability to generate a detailed proof that explains how an answer to a
query was derived.

– The ability to ask successive queries without reloading the knowledge base.

– The ability to perform basic arithmetic.

In addition, that version of Vampire was released under an approved open source
license, and could therefore be tightly integrated with the open source SigmaKEE

system.

Fig. 1. SigmaKee Graph Browser



3 TPTPWorld

The TPTPWorld is a package of TPTP data and software, including the TPTP
problem library, a selection of ATP systems, and a suite of tools for processing
TPTP format data. Although the TPTPWorld was developed and is primarily
used for inhouse maintenance of the TPTP problem library, various components
have become publically available and used in applications, e.g., [14, 19].

One of the keys to the success of the TPTP and related projects is their
consistent use of the TPTP language [15]. The TPTP language was designed
to be suitable for writing both ATP problems and ATP solutions, to be flexible
and extensible, and easily processed by both humans and computers. The TPTP
language BNF is easy to translate into parser-generator (lex/yacc, antlr, etc.)
input [20]. The SZS ontology [17] provides a fine grained ontology of result and
output forms for ATP systems, so that their results can be precisely understood
when used as input to other tools. The ontology also recommends the way that
ontology values should be reported in the output from systems and tools. Figure 2
shows an extract from the top of the result ontology (the full ontology is available
as part of the TPTP distribution).

Fig. 2. SZS Ontology

The SystemOnTPTP utility is a harness that allows a problem written in the
TPTP language to be easily and quickly submitted to a range of ATP systems
and other tools. The implementation of SystemOnTPTP uses several subsidiary
tools to prepare the input for the ATP system, control the execution of the
chosen ATP system, and postprocess the output to produce an SZS result value
and a TPTP format derivation. SystemOnTPTP runs in a UNIX environment,
and is also available as an online service via http POST requests.1

The Interactive Derivation Viewer (IDV) [18] is a tool for graphical rendering
and interaction with TPTP format derivations. The rendering uses shape and
color to provide visual information about a derivation. The user can interact
with the rendering in various ways – zooming, hiding, and displaying parts of
the DAG according to various criteria, access to verification of the derivation,
and an ability to provide a synopsis of a derivation by identifying interesting

1 Hosted at the University of Miami. A browser interface to the service is available at
http://www.tptp.org/cgi-bin/SystemOnTPTP.



lemmas using AGInT [9]. Figure 3 shows the renderings of the derivation and
synopsis for the proof output by EP [11] for the TPTP problem PUZ001+1.

Fig. 3. EP’s Proof by Refutation of PUZ001+1

The One Answer Extraction System (OAESys) is a tool for extracting the
bindings for outermost existentially quantified variables of a conjecture, from a
TPTP format proof of the conjecture. This is done by reproving the conjecture
using the Metis system [5], from only the axioms used in the original proof.
The variable bindings that Metis reports for each inference step of its proof are
analyzed to extract the required bindings (Metis is the only system that we
know of that outputs TPTP-compliant proofs and variable bindings for each
inference step). The restriction to the axioms used in the original proof makes it
highly unlikely for Metis to find a proof that provides different variable bindings
to the original proof. If the axioms used are a subset of the axioms that were
originally available, the problem given to Metis could be significantly easier than
the original problem.

The Multiple ANSwer EXtraction (MANSEX) system is a framework for in-
terpreting a conjecture with outermost existentially quantified variables as a
question, and extracting multiple answers to the question by repetitive calls to
an ATP system that can report the bindings for the variables in one proof of the



conjecture.2 Suitable ATP systems are SNARK, and a combination of EP and
OAESys. At each iteration of MANSEX, the conjecture is augmented by conjoin-
ing either inequalities or negative atoms that deny previously extracted answers.
The ATP system is then called again to find a proof of the modified conjecture.
In the SigmaKEE context the process has been extended to hide the conjecture
modifications from the user - details are provided in Section 4.

The TPTP-parser is a highly reusable Java parser for TPTP data, built using
the antlr parser-generator.3 The parser can easily be used without modifications
in practically any application. This universality is achieved by isolating the parser
code by an interface layer that allows creation of and access to abstract syntax
representations of various TPTP elements. A simple but reasonably efficient
default implementation of the interface layer is provided with the package.

4 Integration of the TPTPWorld into SigmaKEE

The integration of the TPTPWorld provides SigmaKEE with new capabilities:

– Internal support for TPTP format problems and derivations, using a SUO-
KIF to TPTP translation and the the TPTP-parser.

– Access to ATP systems for reasoning tasks, using SystemOnTPTP.

– Question answering using OAESys, with the ability to provide multiple an-
swers through use of the MANSEX framework.

– Presentation of TPTP format proofs using IDV, or using the existing hyper-
linked KIF format extended with SZS ontology status values.

– An extended browser interface for access to these capabilities.

The integration has been implemented by adding external TPTPWorld tools to
the SigmaKEE distribution, and embedding Java implementations of TPTPWorld

tools directly into SigmaKEE.
SigmaKEE was developed to support knowledge bases written in SUO-KIF,

e.g., SUMO. In order to make a large suite of ATP systems available for reasoning
over such knowledge bases, through use of the SystemOnTPTP utility, knowledge
bases are translated to the TPTP language when they are loaded. While much
of the translation is syntactic, there are some constructs in SUMO that require
special processing [8]. These include use of sort signatures, sequence variables,
variable predicates and functions, and embedded (higher-order) formulae.

Once a knowledge base has been loaded into SigmaKEE, queries can be sub-
mitted. A query is translated to a TPTP format conjecture, and the previously
translated knowledge base provides the axioms. These are submitted to an ATP
system through the SystemOnTPTP utility. Queries with outermost existentially
quantified variable are treated as questions whose answers are the values bound

2 Acknowledgement: The original multiple answer extraction system was developed
outside the SigmaKEE project by Aparna Yerikalapudi, at the University of Miami.

3 Acknowledgement: The TPTP-parser was written primarily by Andrei Tchaltsev
at ITC-irst. It is available from http://www.freewebs.com/andrei ch/



to those variables in proofs. Three versions of SystemOnTPTP are available: re-
mote access to the online SystemOnTPTP service via http POST requests, execu-
tion of a locally installed SystemOnTPTP, and a limited internal implementation
of SystemOnTPTP. The ATP systems supported by the internal implementation
are required to be TPTP-compliant in terms of both input and output, and have
licensing that allows them to be added to SigmaKEE. At this stage E/EP, Metis,
SNARK, and Paradox [3] are being used.

The advantage of using the local installation or internal implementation of
SystemOnTPTP is that they do not rely on an online connection to the remote
server. The advantage of the internal implementation is that it is portable to
operating systems that do not have the UNIX environment required for Sys-

temOnTPTP, e.g., Windows XP. The user chooses whether to use the remote
SystemOnTPTP or a local one, and within that which ATP system to use. In
the remote case the online system is queried to get a list of the available ATP
systems. In the local case the ATP systems available in the local SystemOnTPTP

installation (if any) and the internal implementation are available. If an ATP
system is supported by the internal implementation and is also available through
a local SystemOnTPTP installation, the internally supported one is used.

Answers to “question” conjectures are extracted from proofs using an em-
bedding of OAESys into SigmaKEE. As Metis is one of the internally supported
systems, it is available for use in OAESys. When the user requests more than
one answer, an embedding of the MANSEX framework is used. In the SigmaKEE

context the MANSEX process has been extended to hide the conjecture modi-
fications from the user. This extension is done for the second and subsequent
proofs found, as follows. After each answer has been extracted by OAESys, the
existentially quantified variables in the original conjecture, i.e., the conjecture
without the augmentations, are instantiated with the answer values. This in-
stantiated conjecture and just the axioms used in the proof found by the chosen
ATP system are passed to that ATP system. This this additional ATP system
run finds a proof of the (instantiated form of the) original conjecture, rather
than of the augmented conjecture. The use of MANSEX to get multiple answers
is somewhat different to use of the customized version of Vampire mentioned in
Section 2. MANSEX with OAESys requires multiple ATP system runs: two for
the first answer (one to get a proof using the chosen ATP system and another
to Metis within OAESys), and three for each successive answer (additionally the
final call to the chosen ATP system). In contrast, the customized Vampire back-
tracks in its proof space to find multiple answers. As a side-effect, the customized
Vampire can return the same answer multiple times if there are multiple proofs
that produce the same variable bindings, while MANSEX does not.

The integration of the TPTPWorld provides SigmaKEE with three options
for displaying results: TPTP format derivations in plain text format, IDV for
displaying TPTP format derivations graphically, and the hyperlinked KIF for-
mat. IDV has been embedded into SigmaKEE so that it is directly available. The
hyperlinked KIF format has been implemented by translation of TPTP format
derivations into SUO-KIF using an augmentation of the TPTP-parser code, and



then calling SigmaKEE’s hyperlinked KIF presentation feature. The hyperlinked
KIF format has been mildly extended to provide more precise information about
the formulae in a proof, and to provide SZS status values. An example with a
hyperlinked KIF format proof is given in Section 5.

The top part of Figure 4 shows the GUI interface. The interface allows the
user to submit a query or to add to the current knowledge base. The interface
has the following components (top to bottom, left to right):

– Formula text box - The query or additions are put into this text box in
SUO-KIF format.

– Local or Remote SystemOnTPTP, System - Choose which SystemOnTPTP

to use, and which ATP system.

– Maximum answers - Desired number of answers for the query.

– Query time limit - CPU time limit for the query.

– Output format - TPTP, IDV, or hyperlinked KIF

– Ask button - Execute the ATP system on the query.

– Tell button - Add the data to the knowledge base.

5 Sample Use

As an example, EP’s proof of the following SUO-KIF format query to the SUMO
knowledge base is considered: (instance ?X PrimaryColor). The query asks
for an instance of a primary color in the SUMO knowledge base. In SUMO the
following are considered primary colors: Black, Blue, Red, White, and Yellow.
The query was run using the internal implementation of SystemOnTPTP, asking
for two answers, with a CPU limit of 300s, and hyperlinked KIF output. Figure 4
shows the result.

EP returns the first proof shown in the output, with SZS status Theorem.
OAESys is used to extract the first answer - Red. The proof and answer are
translated to the hyperlinked KIF format by SigmaKEE. MANSEX then augments
the query to deny the answer Red, and EP returns another TPTP proof behind
the scenes. OAESys is used to extract the second answer - Blue, which is used
to instantiate the existentially quantified variable of the conjecture. EP returns
the second proof shown in the output. The left column of the hyperlinked KIF
is labeled SUO-KIF format formulae, with embedded HTML hyperlinks back to
terms in the SUMO knowledge base. The right column describes the source of
the formula: the parent formulae, the knowledge base (KB), or the query.

6 Conclusion

While KBR and ATP are both mature fields, there has not been significant
cross-fertilization between the two communities. Both communities would benefit
from a greater degree of interaction. The integration of the TPTPWorld into
SigmaKEE brings together tools that support both communities, which should
make collaboration easier, and drive further cross-disciplinary research.



Fig. 4. Sample hyperlinked KIF format proofs

Future work includes translation of SUMO and other knowledge bases to
the new typed higher-order format (THF) of the TPTP language [2], and use
of higher-order ATP systems such as LEO II [1] to answer higher-order queries
over the knowledge bases.

References

1. C. Benzmüller and L. Paulson. Exploring Properties of Normal Multimodal Logics
in Simple Type Theory with LEO-II. In C. Benzmüller, C. Brown, J. Siekmann,
and R. Statman, editors, Festschrift in Honour of Peter B. Andrews on his 70th
Birthday, page To appear. IfCoLog, 2007.

2. C. Benzmüller, F. Rabe, and G. Sutcliffe. THF0 - The Core TPTP Language for
Classical Higher-Order Logic. In P. Baumgartner, A. Armando, and D. Gilles,
editors, Proceedings of the 4th International Joint Conference on Automated Rea-
soning, Lecture Notes in Artificial Intelligence, 2008.

3. K. Claessen and N. Sorensson. New Techniques that Improve MACE-style Finite
Model Finding. In P. Baumgartner and C. Fermueller, editors, Proceedings of the
CADE-19 Workshop: Model Computation - Principles, Algorithms, Applications,
2003.



4. M.R. Genesereth and R.E. Fikes. Knowledge Interchange Format, Version 3.0
Reference Manual. Technical Report Logic-92-1, Computer Science Department,
Stanford University, 1992.

5. J. Hurd. First-Order Proof Tactics in Higher-Order Logic Theorem Provers. In
M. Archer, B. Di Vito, and C. Munoz, editors, Proceedings of the 1st International
Workshop on Design and Application of Strategies/Tactics in Higher Order Logics,
number NASA/CP-2003-212448 in NASA Technical Reports, pages 56–68, 2003.

6. I. Niles and A. Pease. Towards A Standard Upper Ontology. In C. Welty and
B. Smith, editors, Proceedings of the 2nd International Conference on Formal On-
tology in Information Systems, pages 2–9, 2001.

7. A. Pease. The Sigma Ontology Development Environment. In F. Giunchiglia,
A. Gomez-Perez, A. Pease, H. Stuckenschmidt, Y. Sure, and S. Willmott, editors,
Proceedings of the IJCAI-03 Workshop on Ontologies and Distributed Systems,
volume 71 of CEUR Workshop Proceedings, 2003.

8. A. Pease and G. Sutcliffe. First Order Reasoning on a Large Ontology. In J. Ur-
ban, G. Sutcliffe, and S. Schulz, editors, Proceedings of the CADE-21 Workshop
on Empirically Successful Automated Reasoning in Large Theories, volume 257 of
CEUR Workshop Proceedings, pages 59–69, 2007.

9. Y. Puzis, Y. Gao, and G. Sutcliffe. Automated Generation of Interesting Theo-
rems. In G. Sutcliffe and R. Goebel, editors, Proceedings of the 19th International
FLAIRS Conference, pages 49–54. AAAI Press, 2006.

10. A. Riazanov and A. Voronkov. The Design and Implementation of Vampire. AI
Communications, 15(2-3):91–110, 2002.

11. S. Schulz. E: A Brainiac Theorem Prover. AI Communications, 15(2-3):111–126,
2002.

12. M.E. Stickel. SNARK - SRI’s New Automated Reasoning Kit.
http://www.ai.sri.com/ stickel/snark.html.

13. M.E. Stickel. The Deductive Composition of Astronomical Software from Subrou-
tine Libraries. In A. Bundy, editor, Proceedings of the 12th International Confer-
ence on Automated Deduction, number 814 in Lecture Notes in Artificial Intelli-
gence, pages 341–355. Springer-Verlag, 1994.

14. G. Sutcliffe, E. Denney, and B. Fischer. Practical Proof Checking for Program
Certification. In G. Sutcliffe, B. Fischer, and S. Schulz, editors, Proceedings of the
Workshop on Empirically Successful Classical Automated Reasoning, 20th Inter-
national Conference on Automated Deduction, 2005.

15. G. Sutcliffe, S. Schulz, K. Claessen, and A. Van Gelder. Using the TPTP Language
for Writing Derivations and Finite Interpretations. In U. Furbach and N. Shankar,
editors, Proceedings of the 3rd International Joint Conference on Automated Rea-
soning, number 4130 in Lecture Notes in Artificial Intelligence, pages 67–81, 2006.

16. G. Sutcliffe and C.B. Suttner. The TPTP Problem Library: CNF Release v1.2.1.
Journal of Automated Reasoning, 21(2):177–203, 1998.

17. G. Sutcliffe, J. Zimmer, and S. Schulz. TSTP Data-Exchange Formats for Auto-
mated Theorem Proving Tools. In W. Zhang and V. Sorge, editors, Distributed
Constraint Problem Solving and Reasoning in Multi-Agent Systems, number 112
in Frontiers in Artificial Intelligence and Applications, pages 201–215. IOS Press,
2004.

18. S. Trac, Y. Puzis, and G. Sutcliffe. An Interactive Derivation Viewer. In S. Autexier
and C. Benzmüller, editors, Proceedings of the 7th Workshop on User Interfaces
for Theorem Provers, 3rd International Joint Conference on Automated Reasoning,
volume 174 of Electronic Notes in Theoretical Computer Science, pages 109–123,
2006.



19. J. Urban and G. Sutcliffe. ATP Cross-verification of the Mizar MPTP Challenge
Problems. In N. Dershowitz and A. Voronkov, editors, Proceedings of the 14th
International Conference on Logic for Programming, Artificial Intelligence, and
Reasoning, number 4790 in Lecture Notes in Artificial Intelligence, pages 546–560,
2007.

20. A. Van Gelder and G. Sutcliffe. Extending the TPTP Language to Higher-Order
Logic with Automated Parser Generation. In U. Furbach and N. Shankar, editors,
Proceedings of the 3rd International Joint Conference on Automated Reasoning,
number 4130 in Lecture Notes in Artificial Intelligence, pages 156–161. Springer-
Verlag, 2006.

21. R. Waldinger. Whatever Happened to Deuctive Question Answering? In N. Der-
showitz and A. Voronkov, editors, Proceedings of the 14th International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning, number 4790 in
Lecture Notes in Artificial Intelligence, pages 15–16, 2007.


